Joints

Structural and Functional Classification of Articulations
Agenda

• Joint Basics
• Classification
• Structural Joint Details
• Joint Stability
• Movements of Synovial Joints
• Shape Classification of Synovial Joints
• Joint Concerns/Injuries

• Extra Material – Selected Synovial Joint Detail
Joints

• Rigid elements of the skeleton meet at joints or articulations
• Greek root “arthro” means joint
• Articulations can be:
 – Bone to bone
 – Bone to cartilage
 – Teeth in bony sockets
• Structure of joints
 – Enables resistance to crushing, tearing, and other forces
Classifications of Joints

• Joints can be classified by function or structure

• **Functional classification** – based on amount of movement

 – Synarthroses –
 • immovable – common in axial skeleton

 – Amphiarthroses –
 • slightly movable – common in axial skeleton

 – Diarthroses –
 • freely movable – common in appendicular skeleton
Classifications of Joints

• **Structural classification** based on:
 – Material that binds bones together
 – Presence or absence of a joint cavity
 – Structural classifications include
 • [Fibrous](#)
 • [Cartilaginous](#)
 • [Synovial](#)
Fibrous Joints

• Bones are connected by fibrous connective tissue
• Do not have a joint cavity
• Most are immovable or slightly movable
• Types –
 – sutures – i.e. coronal suture
 – Syndesmoses – i.e. tibiofibular joint
 – Gomphoses – i.e. your teeth!
Fibrous Joints: Sutures

- Bones are tightly bound by a minimal amount of fibrous tissue
- Only occur between the bones of the skull
- Allow bone growth so that the skull can expand with brain during childhood
- Fibrous tissue ossifies in middle age
 - Synostoses – closed sutures
Fibrous Joints: Syndesmoses

• Bones are connected exclusively by ligaments
• Amount of movement depends on length of fibers
 – Tibiofibular joint – an immovable synarthrosis
 – Interosseous membrane between radius and ulna – freely movable diarthrosis
Fibrous Joints: Gomphoses

- Tooth in a socket
- Connecting ligament – the periodontal ligament
Cartilaginous Joints

• Bones are united by cartilage
• Lack a joint cavity
• Two types –
 – synchondroses
 – symphyses
Cartilaginous Joint: Synchondroses

- Hyaline cartilage unites bones
 - Epiphyseal plates
Cartilaginous Joint: Synchondroses

• Joint between first rib and manubrium
Cartilaginous Joint: Symphyses

• Fibrocartilage unites bones – resists tension and compression

• Slightly movable joints that provide strength with flexibility
 – Intervertebral discs
 – Pubic symphysis
Synovial Joints - Characteristics

- Most movable type of joint
- All are diarthroses (freely moving)
- Each contains a fluid-filled joint cavity called a synovial cavity.
A Typical Synovial Joint

- Fibrous Capsule
- Synovial Membrane
- Cartilage (Articular) Disc
- Synovial Joint Cavity
- Articular Cartilage
General Structure of Synovial Joints

• Articular cartilage
 – Ends of opposing bones are covered with hyaline cartilage
 – Absorbs compression

• Joint cavity (synovial cavity)
 – Unique to synovial joints
 – Cavity is a potential space that holds a small amount of fluid
General Structure of Synovial Joints

• Articular capsule – joint cavity is enclosed in a two-layered capsule
 – Fibrous capsule – dense irregular connective tissue – strengthens joint
 – Synovial membrane – loose connective tissue
 • Lines joint capsule and covers internal joint surfaces
 • Functions to make synovial fluid

• Synovial fluid
 – A viscous fluid similar to raw egg white
 • A filtrate of blood
 – Arises from capillaries in synovial membrane
 • Contains glycoprotein molecules secreted by fibroblasts
General Structure of Synovial Joints

• Reinforcing ligaments
 – Often are thickened parts of the fibrous capsule
 – Sometimes are extracapsular ligaments – located outside the capsule
 – Sometimes are intracapsular ligaments – located internal to the capsule
General Structure of Synovial Joints

• Richly supplied with sensory nerves
 – Detect pain
 – Most monitor how much the capsule is being stretched – why?

• Have a rich blood supply
 – Most supply the synovial membrane
 – Extensive capillary beds produce basis of synovial fluid
 – Branches of several major nerves and blood vessels
Synovial Joints with Articular Discs

• Some synovial joints contain an articular disc
 – Occur in the temporomandibular joint and at the knee joint
 – Occur in joints whose articulating bones have somewhat different shapes
How Synovial Joints Function

• Synovial joints – lubricating devices
• Friction could overheat and destroy joint tissue
• Are subjected to compressive forces
 • Fluid is squeezed out as opposing cartilages touch
 • Cartilages ride on the slippery film
Bursae and Tendon Sheaths

- **Bursae and tendon sheaths:**
 - Closed bags of lubricant
 - Reduce friction between body elements
 - Even though they are lined by a synovial membrane, they are not joints
- **Bursa** – a flattened fibrous sac lined by a synovial membrane
- **Tendon sheath** – an elongated bursa that wraps around a tendon
Factors Influencing Joint Stability

• Articular surfaces
 – seldom play a major role in joint stability
 • Exceptions: the elbow, the knee and the hip do provide stability

• Ligaments
 – the more ligaments in a joint, the stronger it is

• Muscle tone
 – the most important factor in joint stability
 – keeps tension on muscle tendons
Movements Allowed by Synovial Joints

• Three basic types of movement
 – Gliding – one bone across the surface of another
 – Angular movement – movements change the angle between bones
 – Rotation – movement around a bone's long axis

• And a host of “special movements”
 – Supination / Pronation
 – Dorsiflexion / Plantar flexion
 – Inversion / Eversion
 – Projection / Retraction
 – Elevation / Depression
 – Opposition
Gliding Joints

• Flat surfaces of two bones slip across each other
• Gliding occurs between
 – Carpals
 – Articular processes of vertebrae
 – Tarsals
Angular Movements

• Increase or decrease angle between bones

• Movements involve:
 – Flexion and Extension
 • Flexion: movement decreases the joint angle
 • Extension: movement that increases the joint angle
 – Abduction and Adduction
 • Abduction: movement away from midline
 • Adduction: movement towards midline
 – Circumduction
 • Circular motion allowed by a joint
Rotation

• Involves turning movement of a bone around its long axis
 – The only movement allowed between atlas and axis vertebrae
 – Occurs at the hip and shoulder joints
Special Movements

• Supination
 – forearm rotates laterally & palm faces anteriorly

• Pronation
 – forearm rotates medially & palm faces posteriorly
Special Movements

• Dorsiflexion
 – lifting the foot so its superior surface approaches the shin

• Plantar flexion
 – depressing the foot – pointing the toes downward
Special Movements

• Inversion
 – turning the sole medially

• Eversion
 – turning the sole laterally
Special Movements

• **Protraction**
 – nonangular movement of jutting out the jaw

• **Retraction**
 – opposite movement to protraction
Special Movements

• Elevation
 – lifting a body superiorly

• Depression
 – moving the elevated part inferiorly
Special Movements

• Opposition
 – movement of the thumb to touch the tips of other fingers
Synovial Joints Classified by Shape

• Plane joint
 – Articular surfaces are flat planes
 – Short gliding movements are allowed
 • Intertarsal and intercarpal joints
 • Movements are nonaxial
 • Gliding does not involve rotation around any axis
 • Considered a translational movement
Synovial Joints Classified by Shape

• Hinge joints
 – Cylindrical end of one bone fits into a trough on another bone
 – Angular movement is allowed in one plane
 – Elbow, ankle, and joints between phalanges
 – Movement is uniaxial – allows movement around one axis only
Synovial Joints Classified by Shape

• Pivot joints
 – Classified as **uniaxial**
 • rotating bone only turns around its long axis
 – Examples
 • Proximal radioulnar joint
 • Joint between atlas and axis
Synovial Joints Classified by Shape

• Condyloid joints
 – Allow moving bone to travel:
 • Side to side – abduction-adduction
 • Back and forth – flexion-extension

• Classified as **biaxial**
 – movement occurs around two axes
Synovial Joints Classified by Shape

• Saddle joints
 – Each articular surface has concave and convex surfaces
 – Classified as **biaxial** joints
Synovial Joints Classified by Shape

• Ball-and-socket joints
 – Spherical head of one bone fits into round socket of another
 – Classified as **multiaxial** – allow movement in all axes
 – Examples: shoulder and hip joints
Selected Synovial Joints – Sternoclavicular Joint

• **Sternoclavicular joint – General Characteristics**
 – Forms a Saddle joint
 – Muscles and ligaments contribute to joint stability, and the unique joint shape allows for multiple complex movements
Sternoclavicular Joint

(a) Sternoclavicular joint

(b) Sternoclavicular movements
Selected Synovial Joints - TMJ

• Temporomandibular joint (TMJ)
 – Lies anterior to the ear
 – Head of the mandible articulates with the mandibular fossa
 – Two surfaces of the articular disc allow two kinds of movement
 • Hinge-like movement
 • Superior surface of disc glides anteriorly
Selected Synovial Joints - Wrist

• Composed of the radiocarpal and intercarpal joint
 – Radiocarpal joint – joint between the radius and proximal carpals (the scaphoid and lunate); allows for flexion, extension, adduction, abduction, and circumduction
 – Intercarpal joint – joint between the proximal and distal rows or carpals; allows for gliding movement
• The wrist joint is stabilized by numerous ligaments
Wrist Joint

Figure 9.10a
Selected Synovial Joints - Shoulder

• Shoulder (Glenohumeral) joint – General Characteristics
 – The most freely movable joint – lacks stability
 – Articular capsule is thin and loose
 – Muscle tendons contribute to joint stability
Glenohumeral Joint

- Acromion of scapula
- Coracoacromial ligament
- Subacromial bursa
- Fibrous articular capsule
- Glenoid cavity containing synovial fluid
- Hyaline cartilage
- Synovial membrane
- Fibrous capsule
- Humerus
- Tendon sheath
- Tendon of long head of biceps brachii muscle
Selected Synovial Joints

• Elbow joint – General Characteristics
 – Allows flexion and extension
 – The humerus’ articulation with ulna forms the hinge
 – Tendons of biceps and triceps brachii provide stability
Elbow Joint

- Humerus
- Synovial membrane
- Synovial cavity
- Articular cartilage
- Coronoid process
- Tendon of triceps muscle
- Bursa
- Trochlea
- Articular cartilage of the trochlear notch
- Ulna
- Lateral epicondyle
- Articular capsule
- Radial collateral ligament
- Olecranon process
- Anular ligament
- Radius
- Ulna
Elbow Joint

- Anular ligament
- Articular capsule
- Radius
- Coronoind process
- Humerus
- Medial epicondyle
- Ulnar (medial) collateral ligament
- Ulna

- Articular capsule
- Anular ligament
- Coronoid process
- Ulnar collateral ligament
- Radius
- Ulna

(d)
Selected Synovial Joints

• Hip joint – General Characteristics
 – A ball-and-socket structure
 – Movements occur in all axes – limited by ligaments and acetabulum
 – Head of femur articulates with acetabulum
 – Muscle tendons contributes to stability, however
 – Stability comes chiefly from acetabulum and capsular ligaments
Frontal Section and Anterior View of the Hip Joint
Posterior View of the Hip Joint

Figure 9.13c, d
Selected Synovial Joints

- Knee joint – General Characteristics
 - The largest and most complex joint
 - Primarily acts as a hinge joint
 - Has some capacity for rotation when leg is flexed
 - Structurally considered compound and bicondyloid
 - Two fibrocartilage menisci occur within the joint cavity
Knee Joint – External Features

• Capsule of knee joint
 – Covers posterior and lateral aspects of the knee
 – Covers tibial and femoral condyles
 – Does not cover the anterior aspect of the knee
 • Anteriorly – covered by three ligaments
 – Patellar, medial, and lateral retinacula

• Ligaments of the knee joint
 – Become taut when knee is extended
 – These extracapsular ligaments are
 • Fibular and tibial collateral ligament
 • Oblique popliteal ligament
 • Arcuate popliteal ligament
Knee Joint – Internal Features

- Intracapsular ligaments
 - Cruciate ligaments – cross each other like an “X”
 - Prevent undesirable movements at the knee joint
 - Each runs from the proximal tibia to the distal femur
 - Anterior cruciate ligament
 - Posterior cruciate ligament
Anterior View of Flexed Knee

Figure 9.14e, f
Selected Synovial Joint

• Ankle Joint – General Characteristics:
 – A hinge joint between:
 • United inferior ends of tibia and fibula
 • And the talus of the foot
• Allows dorsiflexion and plantar flexion only
Ligaments of the Ankle Joint

Figure 9.17b
General Joint Concerns & Issues

• Structure of joints makes them prone to traumatic stress
• Function of joints makes them subject to friction and wear
• Affected by inflammatory and degenerative processes
Joint Injuries

- Sprains – ligaments of a reinforcing joint are stretched or torn
- Dislocation – occurs when the bones of a joint are forced out of alignment
 - Luxation = complete dislocation
 - Subluxation = partial dislocation
- Torn cartilage – common injury to meniscus of knee joint
Inflammatory and Degenerative Conditions

- **Bursitis** – inflammation of a bursa due to injury or friction
- **Tendonitis** – inflammation of a tendon sheath
- **Arthritis** – describes over 100 kinds of joint-damaging diseases
 - **Osteoarthritis** – most common type – “wear and tear” arthritis
 - **Rheumatoid arthritis** – a chronic inflammatory disorder
 - **Gouty arthritis (gout)** – uric acid build-up causes pain in joints
- **Lyme disease** – inflammatory disease often resulting in joint pain