Lecture Outline

- Basics of the Respiratory System
 - Functions & functional anatomy
- Gas Laws
- Ventilation
- Diffusion & Solubility
- Gas Exchange
 - Lungs
 - Tissues
- Gas Transport in Blood
- Regulation of Ventilation & Impacts on
 - Gas levels, pH

Basics of the Respiratory System

General Functions

- Exchange of gases
 - Directionality depends on gradients!
 - Atmosphere to blood
 - Blood to tissues
- Regulation of pH
 - Dependent on rate of CO₂ release
- Protection
- Vocalization
- Synthesis

Respiration

- What is respiration?
 - Respiration = the series of exchanges that leads to the uptake of oxygen by the cells, and the release of carbon dioxide to the lungs
 - Step 1 = ventilation
 - Inspiration & expiration
 - Step 2 = exchange between alveoli (lungs) and pulmonary capillaries (blood)
 - Referred to as External Respiration
 - Step 3 = transport of gases in blood
 - Step 4 = exchange between blood and cells
 - Referred to as Internal Respiration
 - Cellular respiration = use of oxygen in ATP synthesis
Basics of the Respiratory System

Functional Anatomy

- What structural aspects must be considered in the process of respiration?
 - The conduction portion
 - The exchange portion
 - The structures involved with ventilation
 - Skeletal & musculature
 - Pleural membranes
 - Neural pathways

- All divided into
 - Upper respiratory tract
 - Entrance to larynx
 - Lower respiratory tract
 - Larynx to alveoli (trachea to lungs)

Basics of the Respiratory System

Functional Anatomy

- Bones, Muscles & Membranes
 - Create and transmit a pressure gradient
 - Relying on
 - the attachments of the muscles to the ribs (and overlying tissues)
 - The attachment of the diaphragm to the base of the lungs and associated pleural membranes
 - The cohesion of the parietal pleural membrane to the visceral pleural membrane
 - Expansion & recoil of the lung and therefore alveoli with the movement of the overlying structures
Basics of the Respiratory System
Functional Anatomy

• Pleural Membrane Detail
 – Cohesion between parietal and visceral layers is due to serous fluid in the pleural cavity
 • Fluid (30 ml of fluid) creates an attraction between the two sheets of membrane
 • As the parietal membrane expands due to expansion of the thoracic cavity it “pulls” the visceral membrane with it
 – And then pulls the underlying structures which expand as well
 • Disruption of the integrity of the pleural membrane will result in a rapid equalization of pressure and loss of ventilation function = collapsed lung or pneumothorax

Basics of the Respiratory System
Functional Anatomy

• The Respiratory Tree
 – connecting the external environment to the exchange portion of the lungs
 – similar to the vascular component
 – larger airway = higher flow & velocity
 • small cross-sectional area
 – smaller airway = lower flow & velocity
 • large cross-sectional area

<table>
<thead>
<tr>
<th>Name</th>
<th>Division</th>
<th>Diameter (mm)</th>
<th>How many?</th>
<th>Gross-sectional area (cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conducting system</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trachea</td>
<td>0</td>
<td>15-22</td>
<td>1</td>
<td>2.5</td>
</tr>
<tr>
<td>Primary bronchi</td>
<td>1</td>
<td>8-15</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Smaller bronchi</td>
<td>2</td>
<td>5-10</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5-10</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5-10</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5-10</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-11</td>
<td>5-10</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bronchioles</td>
<td>12-23</td>
<td>0.5-1</td>
<td>10⁴</td>
<td>10⁴</td>
</tr>
<tr>
<td>Alveoli</td>
<td>24</td>
<td>0.3</td>
<td>3 x 10⁹</td>
<td>1 x 10⁹</td>
</tr>
</tbody>
</table>

conductive portion
exchange portion
Basics of the Respiratory System

Functional Anatomy

• What is the function of the upper respiratory tract?
 – Warm
 – Humidify
 – Filter
 – Vocalize

• Characteristics of exchange membrane
 – High volume of blood through huge capillary network results in
 • Fast circulation through lungs
 – Pulmonary circulation = 5L/min through lungs….
 – Systemic circulation = 5L/min through entire body!
 • Blood pressure is low…
 – Means
 » Filtration is not a main theme here, we do not want a net loss of fluid into the lungs as rapidly as the systemic tissues
 » Any excess fluid is still returned via lymphatic system
Basics of the Respiratory System

Functional Anatomy

• Sum-up of functional anatomy
 – Ventilation?
 – Exchange?
 – Vocalization?
 – Protection?

Respiratory Physiology

Gas Laws

• Basic Atmospheric conditions
 – Pressure is typically measured in mm Hg
 – Atmospheric pressure is 760 mm Hg
 – Atmospheric components
 • Nitrogen = 78% of our atmosphere
 • Oxygen = 21% of our atmosphere
 • Carbon Dioxide = .033% of our atmosphere
 • Water vapor, krypton, argon, … Make up the rest

• A few laws to remember
 – Dalton’s law
 – Fick’s Laws of Diffusion
 – Boyle’s Law
 – Ideal Gas Law

Respiratory Physiology

Gas Laws

• Dalton’s Law
 – Law of Partial Pressures
 • “each gas in a mixture of gases will exert a pressure independent of other gases present”
 Or
 • The total pressure of a mixture of gases is equal to the sum of the individual gas pressures.
 – What does this mean in practical application?
 • If we know the total atmospheric pressure (760 mm Hg) and the relative abundances of gases (% of gases)
 – We can calculate individual gas effects!
 – \(P_{\text{gas}} \times \% \text{ of gas in atmosphere} = \text{Partial pressure of any atmospheric gas} \)
 » \(P_{O_2} = 760 \text{mmHg} \times 21\% \times .21 = 160 \text{ mmHg} \)
 • Now that we know the partial pressures we know the gradients that will drive diffusion!

• Fick’s Laws of Diffusion
 – Things that affect rates of diffusion
 • Distance to diffuse ✓
 • Gradient sizes ✓
 • Diffusing molecule sizes ✓
 • Temperature ✓
 – What is constant & therefore out of our realm of concern? ✓
 • So it all comes down to partial pressure gradients of gases… determined by Dalton’s Law!
Respiratory Physiology
Gas Laws

• Boyle’s Law
 – Describes the relationship between pressure and volume
 • “the pressure and volume of a gas in a system are inversely related”
 • $P_1V_1 = P_2V_2$

Respiratory Physiology
Gas Laws

• How does Boyle’s Law work in us?
 – As the thoracic cavity (container) expands the volume must up and pressure goes down
 • If it goes below 760 mm Hg what happens?
 – As the thoracic cavity shrinks the volume must go down and pressure goes up
 • If it goes above 760 mm Hg what happens

Respiratory Physiology
Gas Laws

• Ideal Gas law
 – The pressure and volume of a container of gas is directly related to the temperature of the gas and the number of molecules in the container
 – $PV = nRT$
 • $n =$ moles of gas
 • $T =$ absolute temp
 • $R =$ universal gas constant @ 8.3145 J/mol K
 – Do we care?

Ventilation

• Terminology
 – Inspiration = the movement of air into the respiratory tracts (upper & lower)
 – Expiration = movement of air out of the respiratory tracts
 – Respiratory cycle is one inspiration followed by an expiration

• Cause of Inspiration?
 – Biological answer
 • Contraction of the inspiratory muscles causes an increase in the thoracic cavity size, thus allowing air to enter the respiratory tract
 – Physics answer
 • As the volume in the thoracic cavity increases (due to inspiratory muscle action) the pressure within the respiratory tract drops below atmospheric pressure, creating a pressure gradient which causes molecular movement to favor moving into the respiratory tract
 – Cause ofExpiration?
Ventilation

Besides the diaphragm (only creates about 60-75% of the volume change) what are the muscles of inspiration & expiration?

What is the relationship between alveolar pressure and intrapleural pressure and the volume of air moved?

• What are the different respiratory patterns?
 – Quiet breathing (relaxed)
 – Forced inspirations & expirations

• Respiratory volumes follow these respiratory patterns…
Ventilation

• Inspiration
 – Occurs as alveolar pressure drops below atmospheric pressure
 • For convenience atmospheric pressure = 0 mm Hg
 – A (-) value then indicates pressure below atmospheric P
 – A (+) value indicates pressure above atmospheric P
 • At the start of inspiration (time = 0),
 – atmospheric pressure = alveolar pressure
 » No net movement of gases!
 • At time 0 to 2 seconds
 – Expansion of thoracic cage and corresponding pleural membranes and lung tissue causes alveolar pressure to drop to -1 mm Hg
 – Air enters the lungs down the partial pressure gradient

Ventilation

• Expiration
 – Occurs as alveolar pressure elevates above atmospheric pressure due to a shrinking thoracic cage
 • At time 2-4 seconds
 – Inspiratory muscles relax, elastic tissue of corresponding structures initiates a recoil back to resting state
 – This decreases volume and correspondingly increases alveolar pressure to 1 mm Hg
 » This is above atmospheric pressure, causing…?
 • At time 4 seconds
 – Atmospheric pressure once again equals alveolar pressure and there is no net movement

Ventilation

• Both inspiration and expiration can be modified
 – Forced or active inspiration
 – Forced or active expiration

 – The larger and quicker the expansion of the thoracic cavity, the larger the gradient and
 • The faster air moves down its pressure gradient

Ventilation

• Things to consider
 – surfactant effect
 – airway diameter

 – Minute volume respiration (ventilation rate times tidal volume) & anatomical dead space
 • Leading to a more accurate idea of alveolar ventilation rates

 – Changes in ventilation patterns
Ventilation

- Surfactant is produced by the septal cells
 - Disrupts the surface tension & cohesion of water molecules
 - Impact?
 - Prevents alveoli from sticking together during expiration

Ventilation

- **Airway diameter** & other factors that affect airway resistance?

<table>
<thead>
<tr>
<th>FACTOR</th>
<th>AFFECTED BY</th>
<th>MEDIATED BY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of the system</td>
<td>Constant; not a factor</td>
<td></td>
</tr>
<tr>
<td>Viscosity of air</td>
<td>Usually constant; humidity & alti-</td>
<td>Mucus and other factors</td>
</tr>
<tr>
<td>Diameter of airways</td>
<td>tude may alter slightly</td>
<td></td>
</tr>
<tr>
<td>Upper airways</td>
<td>Physical obstruction</td>
<td></td>
</tr>
<tr>
<td>Bronchioles</td>
<td>Bronchoconstriction</td>
<td>Parasympathetic neurons (muscarinic receptors), histamine, leukotrienes</td>
</tr>
<tr>
<td>Bronchodilation</td>
<td>Carbon dioxide, epinephrine (β2 receptors)</td>
<td></td>
</tr>
</tbody>
</table>

Next Time…

- Diffusion and Solubility
 - Gas composition in the alveoli
- Gas exchange
- Gas transport in blood
- Regulation of pulmonary function