# **Renal Physiology**

### **General Functions**

- Produce & expel urine
- Regulate the volume and composition of the extracellular fluid
  - Control pH
  - Control blood volume & blood pressure
  - Controls osmolarity
  - Controls ion balance
- · Production of hormones
  - Renin
  - EPO

#### **Lecture Outline**

- General Functions of the Urinary System
- Quick overview of the functional anatomy of the urinary system
- · How the nephron works & is controlled
- Micturition

# **Overview of Function Anatomy**The System

· Urinary system consists of:



# Overview of Functional Anatomy The Kidney



- Divided into an outer cortex
- And an inner medulla
- The functional unit of this kidney is the nephron
  - Which is located in both the cortex and medullary areas

**Overview of Functional Anatomy** 

The Kidney

- · The nephron consists of:
  - Vascular components
    - Afferent & efferent arterioles
    - Glomerulus
    - Giornerulus
    - Peritubular capillaries
    - Vasa recta
  - Tubular components
    - Proximal convoluted tubule
    - Distal convoluted tubule
    - Nephron loop (loop of Henle)
    - · Collecting duct
  - Tubovascular component
    - Juxtaglomerular appartus



# The Nephron

- · Simplified view of its functions
- Glomerular Filtration
- Tubular Reabsorption
- Tubular Secretion
- Excretion



# The Nephron

 Locations for filtration, reabsorption, secretion & excretion



#### **Filtration**

- First step in urine formation
  - No other urinary function would occur without this aspect!
- · Occurs in the glomerulus due to
  - Filtration membrane &
    - · Capillary hydrostatic pressure
    - · Colloid osmotic pressure
    - Capsular hydrostatic pressure

### **Nephron**

#### **Filtration Membrane**

- · Capillaries are fenestrated
- Overlying podocytes with pedicels form filtration slits
- Basement membrane between the two







# **Nephron**

#### **Glomerular Filtration**

- Barriers
  - Mesanglial cells can alter blood flow through capillaries
  - Basal lamina alters filtration as well by
    - Containing negatively charged glycoproteins
       Act to repel negatively charged plasma proteins
  - Podocytes form the final barrier to filtration by forming "filtration slits"

# **Nephron**

#### **Glomerular Filtration**

- Forces
  - Blood hydrostatic pressure (P<sub>H</sub>)
     Outward filtration pressure
    - - Constant across capillaries due to restricted outflow (efferent arteriole is smaller in diameter than the afferent arteriole)
  - Colloid osmotic pressure (π)
     Opposes hydrostatic pressure at 30 mm Hg
    - Due to presence of proteins in plasma, but not in glomerular capsule (Bowman's capsule)
  - Capsular hydrostatic pressure
    - Opposes hydrostatic pressure at 15 mm Hg



| KEY | P<sub>H</sub> = Hydrostatic pressure (blood pressure) | \( \pi = \text{Colloid osmotic pressure gradient} \) | due to proteins in plasma but not in Bowman's capsule | P<sub>fluid</sub> = Fluid pressure created by fluid in

#### **Glomerular Filtration**

- · 10 mm Hg of filtration pressure
  - Not high, but has a large surface area and nature of filtration membrane
  - creates a glomerular filtration rate (GFR) of 125 ml/min which equates to a fluid volume of 180L/day entering the glomerular capsule.
    - Plasma volume is filtered 60 times/day or 2 ½ times per hour
    - Requires that most of the filtrate must be reabsorbed, or we would be out of plasma in 24 minutes!
  - Still.... GFR must be under regulation to meet the demands of the body.

### **Nephron**

#### Regulation of GFR

- How does GFR remain relatively constant despite changing mean arterial pressure?
  - 1. Myogenic response
    - Typical response to stretch of arteriolar smooth muscle due to increased blood pressure:
      - increase stretch results in smooth muscle contraction and decreased arteriole diameter
      - Causes a reduction in GFR
    - If arteriole blood pressure decreases slightly, GFR only increases slightly as arterioles dilate
      - Due to the fact that the arterioles are normally close to maximal dilation
      - Further drop in bp (below 80mmHg) reduced GFR and conserves plasma volume
  - 2. Tubulooglomerular feedback at the JGA
  - 3. Hormones & ANS

### Nephron

#### **Glomerular Filtration**

- 10 mm Hg of filtration pressure
  - Not high, but has a large surface area and nature of filtration membrane
  - creates a glomerular filtration rate (GFR) of 125 ml/min which equates to a fluid volume of 180L/day entering the glomerular capsule.
    - Plasma volume is filtered 60 times/day or 2 ½ times per hour
    - Requires that most of the filtrate must be reabsorbed, or we would be out of plasma in 24 minutes!
  - GFR maintains itself at the relatively stable rate of 180L/day by
    - Regulation of blood flow through the arterioles
      - Changing afferent and efferent arterioles has different effects on GFR



### **Nephron**

#### **Autoregulation of GFR**

- 2. Tubulooglomerular feedback at the JGA
  - Fluid flow is monitored in the tubule where it comes back between the afferent and efferent arterioles
    - Forms the juxtaglomerular apparatus
      - Specialized tubular cells in the JGA form the macula densa
      - Specialized contractile cells in the afferent arteriole in the JGA are called granular cells or juxtaglomerular cells

# **Juxtaglomerular Apparatus**



### **Nephron**

#### **Regulation of GFR**

- 3. Hormones & ANS
  - Autoregulation does a pretty good job, however extrinsic control systems can affect a change by overriding local autoregulation factors by
    - Changing arteriole resistance
      - Sympathetic innervation to both afferent and efferent arterioles
        - » Acts on alpha receptors causing vasoconstriction
        - » Used when bp drops drastically to reduce GFR and conserve fluid volume
    - Changing the filtration coefficient
      - Release of renin from the granular cells (JG cells) of the JGA initiates the renin-angiotensin-aldosterone system (RAAS)
        - » Angiotensin II is a strong vasoconstrictor
      - Prostaglandins
        - » Vasodilators
      - These hormones may also change the configuration of the mesanglial cells and the podocytes, altering the filtration coefficient

### **Nephron**

#### **Regulation of GFR**

- The cells of the macula densa monitor NaCl concentration in the fluid moving into the dital convoluted tubule.
  - If GFR increases, then NaCl movement also increases as a result
  - Macula densa cells send a paracrine message (unknown for certain) causing the afferent arteriole to contract, decreasing GFR and NaCl movment



### **Nephron**

#### **Regulation of GFR**

Renin-Angiotensin-Aldosterone System



#### **Tubular Reabsorption**

- GFR = 180 L/day, >99% is reabsorbed
  - Why so high on both ends?
    - Allows material to be cleared from plasma quickly and effectively if needed
    - · Allows for easy tuning of ion and water balance
  - Reabsorption
    - Passive and Active Transport Processes
    - · Most of the reabsorption takes place in the PCT



Movement may be via epithelial transport (through the cells) or by paracellular pathways (between the epithelial cells)

### **Nephron**

**Tubular Reabsorption** 

- Secondary Active Transport utilizing Na<sup>+</sup> gradient (Sodium Symport)
  - Used for transporting
    - · Glucose, amino acids, ions, metabolites



### **Nephron**

#### **Tubular Reabsorption**

- Na<sup>+</sup> reabsorption
  - An active process
    - Occurs on the basolateral membrane (Na<sup>+</sup>/K<sup>+</sup> ATPase)
      - Na+ is pumped into the interstitial fluid
      - K+ is pumped into the tubular cell
    - Creates a Na+ gradient that can be utilized for 2° active transport



# **Nephron**

#### **Tubular Reabsorption**

- The transport membrane proteins
  - Will reach a saturation point
    - They have a maximum transport rate = transport maximum  $(T_m)$ 
      - The maximum number of molecules that can be transported per unit of time
      - Related to the plasma concentration called the renal threshold...
        - » The point at which saturation occurs and T<sub>m</sub> is exceeded



#### **Tubular Reabsorption**

- Glucose Reabsorption
  - Glucose is filtered and reabsorbed hopefully 100%
    - · Glucose excreted = glucose filtered glucose reabsorbed



# **Nephron**

#### **Tubular Secretion**

- Tubular secretion is the movement of material from the peritubular capillaries and interstitial space into the nephron tubules
  - Depends mainly on transport systems
  - Enables further removal of unwanted substances
  - Occurs mostly by secondary active transport
  - If something is filtered, not reabsorbed, and secreted... the clearance rate from plasma is greater than GFR!
    - · Ex. penicillin filtered and secreted, not reabsorbed
      - 80% of penicillin is gone within 4 hours after administration

### **Nephron**

#### **Tubular Reabsorption**

- Where does filtered material go?
  - Into peritubular capillaries because in the capillaries there exists
    - · Low hydrostatic pressure
    - · Higher colloid osmotic pressure

# **Nephron**

#### **Excretion & Clearance**

Filtration – reabsorption + secretion = Excretion

- The excretion rate then of a substance (x) depends on
  - the filtration rate of x
  - if x is reabsorbed, secreted or both
- This just tells us excretion, but not much about how the nephron is working in someone
  - This is done by testing a known substance that should be filtered, but neither reabsorbed or secreted
    - 100% of the filtered substance is excreted and by monitoring plasma levels of the substance, a clearance rate can be determined

#### **Excretion & Clearance**

- Inulin
  - A plant product that is filtered but not reabsorbed or secreted
  - Used to determine clearance rate and therefore nephron function



### **Nephron**

**Excretion & Clearance** 

| Table 19-2 Renal Handling of Solutes                          |                                       |
|---------------------------------------------------------------|---------------------------------------|
| For any molecule X that is freely filtered at the glomerulus: | Renal handling of X is:               |
| Filtration is greater than excretion                          | Net reabsorption of $X$               |
| Excretion is greater than filtration                          | Net secretion of $X$                  |
| Filtration and excretion are the same                         | No net reabsorption or secretion      |
| Clearance of X is less than inulin clearance                  | Net reabsorption of X                 |
| Clearance of $X$ is equal to inulin clearance                 | X is neither reabsorbed nor secreted. |
| Clearance of X is greater than inulin clearance               | Net secretion of X                    |

### **Nephron**

**Excretion & Clearance** 

 The relationship between clearance and excretion using a few examples



### **Nephron**

**Urine Concentration & Dilution** 

- Urine normally exits the nephron in a dilute state, however under hormonal controls, water reabsorption occurs and can create an extremely concentrated urine.
  - Aldosterone & ADH are the two main hormones that drive this water reabsorption
    - Aldosterone creates an obligatory response
      - Aldosterone increases Na+/K+ ATPase activity and therefore reabsorption of Na+... where Na+ goes, water is obliged to follow
    - · ADH creates a facultative response
      - Opens up water channels in the collecting duct, allowing for the reabsorption of water via osmosis

# **Micturition**

- Once excreted, urine travels via the paired ureters to the urinary bladder where it is held (about ½ L)
- Sphincters control movement out of the bladder
  - Internal sphincter smooth muscle (invol.)
  - External sphincter skeletal muscle (vol.)

# **Micturition**

Reflex Pathway

