Renal Physiology

General Functions

• Produce & expel urine
• Regulate the volume and composition of the extracellular fluid
 – Control pH
 – Control blood volume & blood pressure
 – Controls osmolarity
 – Controls ion balance
• Production of hormones
 – Renin
 – EPO

Overview of Function Anatomy

The System

• Urinary system consists of:

Lecture Outline

• General Functions of the Urinary System
• Quick overview of the functional anatomy of the urinary system
• How the nephron works & is controlled
• Micturition
Overview of Functional Anatomy

The Kidney

- Divided into an outer cortex
- And an inner medulla
- The functional unit of this kidney is the nephron
 - Which is located in both the cortex and medullary areas

The Nephron

- Simplified view of its functions

The Nephron

- Locations for filtration, reabsorption, secretion & excretion
Nephron
Filtration

• First step in urine formation
 – No other urinary function would occur without this aspect!
• Occurs in the glomerulus due to
 – Filtration membrane &
 • Capillary hydrostatic pressure
 • Colloid osmotic pressure
 • Capsular hydrostatic pressure

Nephron
Filtration Membrane

• Capillaries are fenestrated
• Overlying podocytes with pedicels form filtration slits
• Basement membrane between the two

Nephron
Glomerular Filtration

• Barriers
 – Mesangial cells can alter blood flow through capillaries
 – Basal lamina alters filtration as well by
 • Containing negatively charged glycoproteins
 – Act to repel negatively charged plasma proteins
 – Podocytes form the final barrier to filtration by forming “filtration slits”

Nephron
Glomerular Filtration

• Forces
 – Blood hydrostatic pressure (P_H)
 • Outward filtration pressure of 55 mm Hg
 – Constant across capillaries due to restricted outflow (efferent arteriole is smaller in diameter than the afferent arteriole)
 – Colloid osmotic pressure (π)
 • Opposes hydrostatic pressure at 30 mm Hg
 – Due to presence of proteins in plasma, but not in glomerular capsule (Bowman’s capsule)
 – Capsular hydrostatic pressure (P_{fluid})
 • Opposes hydrostatic pressure at 15 mm Hg
Nephron
Glomerular Filtration

- 10 mm Hg of filtration pressure
 - Not high, but has a large surface area and nature of filtration membrane
 - Creates a glomerular filtration rate (GFR) of 125 ml/min which equates to a fluid volume of 180L/day entering the glomerular capsule.
 • Plasma volume is filtered 60 times/day or 2 ½ times per hour
 • Requires that most of the filtrate must be reabsorbed, or we would be out of plasma in 24 minutes!
 - Still…. GFR must be under regulation to meet the demands of the body.

Nephron
Regulation of GFR

- How does GFR remain relatively constant despite changing mean arterial pressure?
 1. Myogenic response
 • Typical response to stretch of arteriolar smooth muscle due to increased blood pressure:
 - Increase stretch results in smooth muscle contraction and decreased arteriole diameter
 - Causes a reduction in GFR
 • If arteriole blood pressure decreases slightly, GFR only increases slightly as arterioles dilate
 - Due to the fact that the arterioles are normally close to maximal dilation
 - Further drop in BP (below 80mmHg) reduced GFR and conserves plasma volume
 2. Tubuloglomerular feedback at the JGA
 3. Hormones & ANS

Nephron
Glomerular Filtration

- 10 mm Hg of filtration pressure
 - Not high, but has a large surface area and nature of filtration membrane
 - Creates a glomerular filtration rate (GFR) of 125 ml/min which equates to a fluid volume of 180L/day entering the glomerular capsule.
 • Plasma volume is filtered 60 times/day or 2 ½ times per hour
 • Requires that most of the filtrate must be reabsorbed, or we would be out of plasma in 24 minutes!
 - GFR maintains itself at the relatively stable rate of 180L/day by
 • Regulation of blood flow through the arterioles
 - Changing afferent and efferent arterioles has different effects on GFR

Nephron
Autoregulation of GFR

2. Tubuloglomerular feedback at the JGA
 - Fluid flow is monitored in the tubule where it comes back between the afferent and efferent arterioles
 • Forms the juxtaglomerular apparatus
 - Specialized tubular cells in the JGA form the macula densa
 - Specialized contractile cells in the afferent arteriole in the JGA are called granular cells or juxtaglomerular cells
Juxtaglomerular Apparatus

Nephron Regulation of GFR

3. Hormones & ANS
 – Autoregulation does a pretty good job, however extrinsic control systems can affect a change by overriding local autoregulation factors by
 • Changing arteriole resistance
 – Sympathetic innervation to both afferent and efferent arterioles
 » Acts on alpha receptors causing vasoconstriction
 » Used when bp drops drastically to reduce GFR and conserve fluid volume
 • Changing the filtration coefficient
 – Release of renin from the granular cells (JG cells) of the JGA initiates the renin-angiotensin-aldosterone system (RAAS)
 » Angiotensin II is a strong vasoconstrictor
 – Prostaglandins
 » Vasodilators
 – These hormones may also change the configuration of the mesangial cells and the podocytes, altering the filtration coefficient

Nephron Regulation of GFR

• The cells of the macula densa monitor NaCl concentration in the fluid moving into the distal convoluted tubule.
 – If GFR increases, then NaCl movement also increases as a result
 – Macula densa cells send a paracrine message (unknown for certain) causing the afferent arteriole to contract, decreasing GFR and NaCl movement

Nephron Regulation of GFR

• Renin-Angiotensin-Aldosterone System

Renin-Angiotensin-Aldosterone System

- Decrease in renal perfusion (normal increase if the GFR falls)
- Angiotensinogen → Angiotensin I → Angiotensin II
- Angiotensin II
 - Increases aldosterone, increases sodium reabsorption
 - Increases atrial natriuretic peptide (ANP), decreases blood pressure
 - Increases aldosterone, increases potassium excretion
 - Causes vasoconstriction
- Angiotensin II
 - Increases aldosterone, increases sodium reabsorption
 - Increases atrial natriuretic peptide (ANP), decreases blood pressure
 - Increases aldosterone, increases potassium excretion
 - Causes vasoconstriction
- Angiotensin II
 - Increases aldosterone, increases sodium reabsorption
 - Increases atrial natriuretic peptide (ANP), decreases blood pressure
 - Increases aldosterone, increases potassium excretion
 - Causes vasoconstriction
- Angiotensin II
 - Increases aldosterone, increases sodium reabsorption
 - Increases atrial natriuretic peptide (ANP), decreases blood pressure
 - Increases aldosterone, increases potassium excretion
 - Causes vasoconstriction
- Angiotensin II
 - Increases aldosterone, increases sodium reabsorption
 - Increases atrial natriuretic peptide (ANP), decreases blood pressure
 - Increases aldosterone, increases potassium excretion
 - Causes vasoconstriction
- Angiotensin II
 - Increases aldosterone, increases sodium reabsorption
 - Increases atrial natriuretic peptide (ANP), decreases blood pressure
 - Increases aldosterone, increases potassium excretion
 - Causes vasoconstriction
- Angiotensin II
 - Increases aldosterone, increases sodium reabsorption
 - Increases atrial natriuretic peptide (ANP), decreases blood pressure
 - Increases aldosterone, increases potassium excretion
 - Causes vasoconstriction
- Angiotensin II
 - Increases aldosterone, increases sodium reabsorption
 - Increases atrial natriuretic peptide (ANP), decreases blood pressure
 - Increases aldosterone, increases potassium excretion
 - Causes vasoconstriction
- Angiotensin II
 - Increases aldosterone, increases sodium reabsorption
 - Increases atrial natriuretic peptide (ANP), decreases blood pressure
 - Increases aldosterone, increases potassium excretion
 - Causes vasoconstriction
- Angiotensin II
 - Increases aldosterone, increases sodium reabsorption
 - Increases atrial natriuretic peptide (ANP), decreases blood pressure
 - Increases aldosterone, increases potassium excretion
 - Causes vasoconstriction
- Angiotensin II
 - Increases aldosterone, increases sodium reabsorption
 - Increases atrial natriuretic peptide (ANP), decreases blood pressure
 - Increases aldosterone, increases potassium excretion
 - Causes vasoconstriction
- Angiotensin II
 - Increases aldosterone, increases sodium reabsorption
 - Increases atrial natriuretic peptide (ANP), decreases blood pressure
 - Increases aldosterone, increases potassium excretion
 - Causes vasoconstriction
- Angiotensin II
 - Increases aldosterone, increases sodium reabsorption
 - Increases atrial natriuretic peptide (ANP), decreases blood pressure
 - Increases aldosterone, increases potassium excretion
 - Causes vasoconstriction
- Angiotensin II
 - Increases aldosterone, increases sodium reabsorption
 - Increases atrial natriuretic peptide (ANP), decreases blood pressure
 - Increases aldosterone, increases potassium excretion
 - Causes vasoconstriction
- Angiotensin II
 - Increases aldosterone, increases sodium reabsorption
 - Increases atrial natriuretic peptide (ANP), decreases blood pressure
 - Increases aldosterone, increases potassium excretion
 - Causes vasoconstriction
- Angiotensin II
 - Increases aldosterone, increases sodium reabsorption
 - Increases atrial natriuretic peptide (ANP), decreases blood pressure
 - Increases aldosterone, increases potassium excretion
 - Causes vasoconstriction
- Angiotensin II
 - Increases aldosterone, increases sodium reabsorption
 - Increases atrial natriuretic peptide (ANP), decreases blood pressure
 - Increases aldosterone, increases potassium excretion
 - Causes vasoconstriction
- Angiotensin II
 - Increases aldosterone, increases sodium reabsorption
 - Increases atrial natriuretic peptide (ANP), decreases blood pressure
 - Increases aldosterone, increases potassium excretion
 - Causes vasoconstriction
- Angiotensin II
 - Increases aldosterone, increases sodium reabsorption
 - Increases atrial natriuretic peptide (ANP), decreases blood pressure
 - Increases aldosterone, increases potassium excretion
 - Causes vasoconstriction
- Angiotensin II
 - Increases aldosterone, increases sodium reabsorption
 - Increases atrial natriuretic peptide (ANP), decreases blood pressure
 - Increases aldosterone, increases potassium excretion
 - Causes vasoconstriction
- Angiotensin II
 - Increases aldosterone, increases sodium reabsorption
 - Increases atrial natriuretic peptide (ANP), decreases blood pressure
 - Increases aldosterone, increases potassium excretion
 - Causes vasoconstriction
- Angiotensin II
 - Increases aldosterone, increases sodium reabsorption
 - Increases atrial natriuretic peptide (ANP), decreases blood pressure
 - Increases aldosterone, increases potassium excretion
 - Causes vasoconstriction
- Angiotensin II
 - Increases aldosterone, increases sodium reabsorption
 - Increases atrial natriuretic peptide (ANP), decreases blood pressure
 - Increases aldosterone, increases potassium excretion
 - Causes vasoconstriction
- Angiotensin II
 - Increases aldosterone, increases sodium reabsorption
 - Increases atrial natriuretic peptide (ANP), decreases blood pressure
 - Increases aldosterone, increases potassium excretion
 - Causes vasoconstriction
- Angiotensin II
 - Increases aldosterone, increases sodium reabsorption
 - Increases atrial natriuretic peptide (ANP), decreases blood pressure
 - Increases aldosterone, increases potassium excretion
 - Causes vasoconstriction
- Angiotensin II
 - Increases aldosterone, increases sodium reabsorption
 - Increases atrial natriuretic peptide (ANP), decreases blood pressure
 - Increases aldosterone, increases potassium excretion
 - Causes vasoconstriction
- Angiotensin II
 - Increases aldosterone, increases sodium reabsorption
 - Increases atrial natriuretic peptide (ANP), decreases blood pressure
 - Increases aldosterone, increases potassium excretion
 - Causes vasoconstriction
- Angiotensin II
 - Increases aldosterone, increases sodium reabsorption
 - Increases atrial natriuretic peptide (ANP), decreases blood pressure
 - Increases aldosterone, increases potassium excretion
 - Causes vasoconstriction
- Angiotensin II
 - Increases aldosterone, increases sodium reabsorption
 - Increases atrial natriuretic peptide (ANP), decreases blood pressure
 - Increases aldosterone, increases potassium excretion
 - Causes vasoconstriction
- Angiotensin II
 - Increases aldosteron...
Nephron

Tubular Reabsorption

• GFR = 180 L/day, >99% is reabsorbed
 – Why so high on both ends?
 • Allows material to be cleared from plasma quickly and effectively if needed
 – Reabsorption
 • Passive and Active Transport Processes
 • Most of the reabsorption takes place in the PCT

Nephron

Tubular Reabsorption

• Na⁺ reabsorption
 – An active process
 • Occurs on the basolateral membrane (Na⁺/K⁺ ATPase)
 – Na⁺ is pumped into the interstitial fluid
 – K⁺ is pumped into the tubular cell
 • Creates a Na⁺ gradient that can be utilized for 2º active transport

Nephron

Tubular Reabsorption

• Secondary Active Transport utilizing Na⁺ gradient (Sodium Symport)
 – Used for transporting
 • Glucose, amino acids, ions, metabolites

Nephron

Tubular Reabsorption

• The transport membrane proteins
 – Will reach a saturation point
 • They have a maximum transport rate = transport maximum (T_m)
 – The maximum number of molecules that can be transported per unit of time
 – Related to the plasma concentration called the renal threshold...
 » The point at which saturation occurs and T_m is exceeded
Nephron
Tubular Reabsorption

• Glucose Reabsorption
 – Glucose is filtered and reabsorbed hopefully 100%
 • Glucose excreted = glucose filtered – glucose reabsorbed

Nephron
Tubular Secretion

• Tubular secretion is the movement of material from the peritubular capillaries and interstitial space into the nephron tubules
 – Depends mainly on transport systems
 – Enables further removal of unwanted substances
 – Occurs mostly by secondary active transport

 – If something is filtered, not reabsorbed, and secreted... the clearance rate from plasma is greater than GFR!
 • Ex. penicillin – filtered and secreted, not reabsorbed
 – 80% of penicillin is gone within 4 hours after administration

Nephron
Tubular Reabsorption

• Where does filtered material go?
 – Into peritubular capillaries because in the capillaries there exists
 • Low hydrostatic pressure
 • Higher colloid osmotic pressure

Nephron
Excretion & Clearance

Filtration – reabsorption + secretion = Excretion

• The excretion rate then of a substance (x) depends on
 – the filtration rate of x
 – if x is reabsorbed, secreted or both

• This just tells us excretion, but not much about how the nephron is working in someone
 – This is done by testing a known substance that should be filtered, but neither reabsorbed or secreted
 • 100% of the filtered substance is excreted and by monitoring plasma levels of the substance, a clearance rate can be determined
Nephron Excretion & Clearance

- **Inulin**
 - A plant product that is filtered but not reabsorbed or secreted
 - Used to determine clearance rate and therefore nephron function

Nephron Excretion & Clearance

- The relationship between clearance and excretion using a few examples

Table 19-2 Renal Handling of Solutes

<table>
<thead>
<tr>
<th>For any molecule X that is freely filtered at the glomerulus:</th>
<th>Renal handling of X is:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filtration is greater than excretion</td>
<td>Net reabsorption of X</td>
</tr>
<tr>
<td>Excretion is greater than filtration</td>
<td>Net secretion of X</td>
</tr>
<tr>
<td>Filtration and excretion are the same</td>
<td>No net reabsorption or secretion</td>
</tr>
<tr>
<td>Clearance of X is less than inulin clearance</td>
<td>Net reabsorption of X</td>
</tr>
<tr>
<td>Clearance of X is equal to inulin clearance</td>
<td>X is neither reabsorbed nor secreted</td>
</tr>
<tr>
<td>Clearance of X is greater than inulin clearance</td>
<td>Net secretion of X</td>
</tr>
</tbody>
</table>

Nephron Urine Concentration & Dilution

- Urine normally exits the nephron in a dilute state, however under hormonal controls, water reabsorption occurs and can create an extremely concentrated urine.
 - Aldosterone & ADH are the two main hormones that drive this water reabsorption
 - Aldosterone creates an obligatory response
 - Aldosterone increases Na+/K+ ATPase activity and therefore reabsorption of Na+... where Na+ goes, water is obliged to follow
 - ADH creates a facultative response
 - Opens up water channels in the collecting duct, allowing for the reabsorption of water via osmosis
Micturition

- Once excreted, urine travels via the paired ureters to the urinary bladder where it is held (about ½ L)
- Sphincters control movement out of the bladder
 - Internal sphincter – smooth muscle (invol.)
 - External sphincter – skeletal muscle (vol.)

Micturition

- Reflex Pathway

![Diagram of Micturition Reflex Pathway](image-url)