Peripheral Nervous System Overview

• What is the PNS?
 – Continuation of the CNS
 – Relays all information to and from the CNS
 – Has its own integration centers
 • Ganglia of the autonomic nervous system
 • Plexuses of the enteric nervous system
• Where does the CNS end and the PNS begin?
 – PNS begins when the spinal nerves exit the vertebral column
• What are the functional systems of the PNS?
 – Somatic System
 – Autonomic System
 • Enteric System

Peripheral Nervous System Somatic Division

• Somatic Division has
 – Afferent components
 • Senses
 – Special & General
 – Efferent components
 • Motor
 – Somatic
 » voluntary muscle control
 » Utilize ACh at all neuromuscular junctions
Peripheral Nervous System
Autonomic System Design & Function

- ANS is designed to
 - Maintain homeostasis by
 - Working with the endocrine system
 - Being influenced by emotional/behavioral states
 - Utilizing reflex pathways that trend towards being antagonistic in nature
- The link between the CNS and the ANS is the hypothalamus which
 - monitors
 - Blood chemistry
 - Temperature
 - Hunger
 - Influences ANS, endocrine and behavioral responses

Peripheral Nervous System
Autonomic System Design & Function

- ANS consists of two antagonistic systems
 - Sympathetic Division
 - Fright
 - Flight
 - Fight
 - Parasympathetic Division
 - Rest and Digest Processes

Peripheral Nervous System
Autonomic System Design & Function

- ANS Pathway is two neurons + ganglia
 - 1st neuron
 - Exits the CNS
 - preganglionic neuron
 - 2nd neuron
 - postganglionic Neuron that goes to target cells
 - point of Synapse creates autonomic ganglion

Peripheral Nervous System
Autonomic System Design & Function

- How does a two neuron system achieve antagonizing results?
 - Different neurotransmitters released by the postganglionic neurons
 - Effect is determined by
 - the receptors on the target cells

Peripheral Nervous System
Autonomic System Design & Function

- ACh is used by postganglionic neurons of the parasympathetic division
 - mainly muscarinic receptors
- Norepinephrine is used by postganglionic neurons of the sympathetic division
 - mainly adrenergic receptors
Peripheral Nervous System
Autonomic System Design & Function

- **Parasympathetic Division Specifics**
 - Preganglionic neurons exit at the cranial and sacral regions
 - Majority of parasympathetic outflow is via the vagus nerve (75%)
 - Utilize mainly muscarinic receptors and to a lesser extent nicotinic receptors
 - Nicotinic = ICR events
 » Ionotropic for Na⁺, K⁺ and Ca²⁺
 - Muscarinic = GPCR events
 » Metabotropic
 » May be + or –
 » 5 different forms of receptors

- **Sympathetic Division Specifics**
 - Two neuron pathway uses norepinephrine (NE)
 - Binds to preferentially to alpha 1&2 receptors and Beta-3 receptors
 - NE binds equally (with E) to Beta-1 receptors
 - NE binds less preferentially to Beta-2 receptors
 - Adrenal sympathetic pathway uses epinephrine
 - Binds to preferentially to Beta-2 and equally with Beta-2 receptors
 - Receptors:
 - α₁ receptors when activated activates phospholipase C
 - α₂ receptors when activated decreases cAMP production
 - β₁, β₂, β₃ receptors all increase cAMP production

Peripheral Nervous System
Autonomic System Integration
Peripheral Nervous System
Enteric System

- Enteric System
 - Controls motility and secretion within the digestive system
 - Consists of a neural network that is
 - Influenced by the ANS
 - Capable of autonomic controls via reflexes
 - Made up of ~100 million neurons within the
 - Submucosal plexuses
 - Myenteric plexuses