Peripheral Nervous System

Overview

- What is the PNS?
 - Continuation of the CNS
 - Relays all information to and from the CNS
 - Has its own integration centers
 - · Ganglia of the autonomic nervous system
 - · Plexuses of the enteric nervous system
- Where does the CNS end and the PNS begin?
 - PNS begins when the spinal nerves exit the vertebral column
- · What are the functional systems of the PNS?
 - Somatic System
 - Autonomic System
 - · Enteric System

Lecture Outline

- Peripheral Nervous System
 - Overview
 - Divisions
 - Somatic
 - Autonomic
 - Sympathetic & parasympathetic Divisions
 - Enteric nervous system

Peripheral Nervous System

Somatic Division

- Somatic Division has
 - Afferent components
 - Senses
 - Special & General
 - Efferent components
 - Motor
 - Somatic
 - » voluntary muscle control
 - » Utilize ACh at all neuromuscular junctions

Autonomic System Design & Function

- ANS is designed to
 - Maintain homeostasis by
 - · Working with the endocrine system
 - Being influenced by emotional/behavioral states
 - Utilizing reflex pathways that trend towards being antagonistic in nature
- The link between the CNS and the ANS is the hypothalamus which
 - monitors
 - · Blood chemistry
 - · Temperature
 - Hunger
 - Influences ANS, endocrine and behavioral responses

Peripheral Nervous System

Autonomic System Design & Function

ANS consists of two antagonistic systems

Peripheral Nervous System

Autonomic System Design & Function

- · ANS Pathway is two neurons + ganglia
 - 1st neuron
 - · Exits the CNS
 - · preganglionic neuron
 - 2nd neuron
 - postganglionic Neuron that goes to target cells
 - point of Synapse creates autonomic ganglion

Peripheral Nervous System

Autonomic System Design & Function

- How does a two neuron system achieve antagonizing results?
 - Different neurotransmitters released by the postganglionic neurons

Autonomic System Design & Function

Peripheral Nervous System

Autonomic System Design & Function

Sympathetic Division Specifics Two neuron pathway uses norepinephrine (NE) · Binds to preferentially to alpha 1&2 receptors and Beta-3 receptors · NE binds equally (with E) to Beta-1 · NE binds less preferentially to Beta-2 receptors - Adrenal sympathetic pathway uses epinephrine Binds to preferentially to Beta-2 and equally with Beta-2 receptors Receptors: α₁ receptors when activated activates phospholipase C α₂ receptors when activated nooth and cardiac muscles décrease cAMP production β_1 , β_2 , β_3 receptors all increase cAMP production

Peripheral Nervous System

Effector Organ	Parasympathetic Response **	Sympathetic Response	Adrenergic Receptor
Pupil of eye	Constricts	Dilates	α
Salivary glands	Watery secretion	Mucus, enzymes	α and β_2
Heart	Slows rate	Increases rate and force of contraction	β_1
Arterioles and veins	_	Constricts Dilates	α β_2
Lungs	Bronchioles constrict	Bronchioles dilate	β_2^*
Digestive tract	Increases motility and secretion	Decreases motility and secretion	α, β2
Exocrine pancreas	Increases enzyme secretion	Decreases enzyme secretion	α

Autonomic System Integration

Peripheral Nervous System

Effector Organ	Parasympathetic Response **	Sympathetic Response	Adrenergic Receptor
Endocrine pancreas	Stimulates insulin secretion	Inhibits insulin secretion	α
Adrenal medulla	_	Secretes catecholamines	-
Kidney	_	Increases renin secretion	β_1
Urinary bladder	Release of urine	Urinary retention	α , β_2
Adipose tissue	_	Fat breakdown	β
Sweat glands		Localized sweating	α
Male and female sex organs	Erection	Ejaculation (male)	α
Uterus	Depends on stage of cycle	Depends on stage of cycle	α , β_2
Lymphoid tissue (not illustrated)	_	Generally inhibitory	α , β_2

Autonomic System Integration

ACh = acetylcholin

A E = epinephrine

Enteric System

- Enteric System
 - Controls motility and secretion within the digestive system
 - Consists of a neural network that is
 - Influenced by the ANS
 - Capable of autonomic controls via reflexes
 - Made up of ~100 million neurons within the
 - Submucosal plexuses
 - Myenteric plexuses