Muscle Physiology

Part Two

Skeletal Muscle

Energetics & Fatigue

- ATP use is required for
 - maintenance of resting membrane potentials
 - Na+/K+ ATPase
 - exocytosis of ACh at the NMJ
 - Possibly kinesin ATPase
 - moving myosin heads back to "energized" state
 - myosin ATPase
 - return of Ca2+ into sarcoplasmic reticulum
 - Ca²⁺ ATPase

Lecture Outline

- Muscle Function
- Muscle Characteristics
- Muscle Tissue Types
- Skeletal Muscle
 - General Functions of Skeletal Muscle
 - Functional Anatomy
 - Physiology
 - Energetics & Fatigue
 - Contraction Strength
 - Skeletal Muscle Types
 - Adaptive Responses
- · Cardiac Muscle Physiology
- · Smooth Muscle Physiology

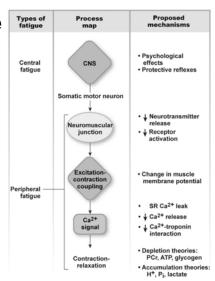
Skeletal Muscle

Energetics & Fatigue

- Sources of ATP for muscle action
 - Free ATP
 - Only have enough stores for about 5-6 seconds of intense activity
 - Phosphagen System
 - Transfer of high energy phosphate from creatine phosphate to ADP to make ATP

$$C \sim P + ADP \longleftrightarrow C + ATP$$

 enough for approximately another 10-15 seconds of highly intense muscle action


Energetics & Fatigue

- Sources of ATP for muscle action cont...
 - Glycolysis (Glycogen-Lactic Acid System)
 - Glycogenolysis converts glycogen to glucose
 - Glucose is split into 2 pyruvate molecules with a net result of 2 ATP, if oxygen is present,
 - pyruvate is converted to acetyl coenzyme A,
 - If oxygen is not present,
 - pyruvate is converted to lactic acid
 - » Contributes to lactic acid accumulation in the muscle tissue
 - Provides enough ATP for an additional 30-40 seconds of intense activity

Skeletal Muscle

Energetics & Fatigue

What causes muscle to fatigue?

Skeletal Muscle

Energetics & Fatigue

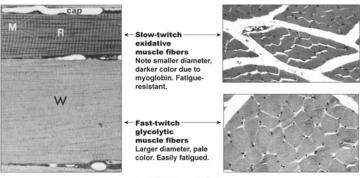
- Sources of ATP for muscle action cont...
 - Aerobic Respiration
 - Citric Acid Cycle + Electron Transport Chain
 - Highly efficient production of 30 32 molecules of ATP (net)
 - Long term... as long as oxygen and fuel are present

There are three sources of ATP for aerobic muscle to use: *carbohydrates*, *fats*, *and amino acid proteins*. Carbohydrates metabolize the most efficiently and are therefore used first. If carbohydrates are not available, your body metabolizes fat and amino acid proteins. All three of these reactions are called Aerobic Glycolysis because they use glucose and oxygen:

- 1. Carbohydrate Metabolism: Glucose + 0₂ → 36ATP + C0₂ + H₂0
- 2. Fat Metabolism: Fatty Acid + 0₂ + 130 ATP + C0₂ + H₂0
- 3. Amino Acid Protein Metabolism: Amino Acids + 0₂ → 15 ATP + C0₂ + H₂0

Skeletal Muscle

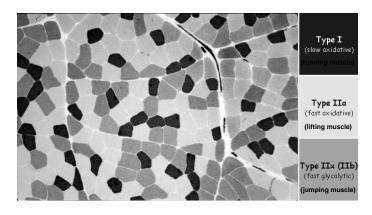
Types


- All skeletal muscle is skeletal muscle?
 - Yes but there are varieties
 - Oxidative vs. Glycolytic
 - ratio is dependent on genetics
 - Glycolytic muscles
 - » 3 types (Type IIa, IIb, IIx)
 - » Fast contraction action
 - » Generally paler in color due to lower amounts of myoglobin and vascularity
 - » utilize anaerobic pathways for energy
 - » not use for long term endurance activities
 - Oxidative
 - » Use aerobic processes
 - » Long term endurance activities
 - » Highly vascular, more myoglobin

Types

Fiber Type	Type I fibers	Type II a fibers	Type II x fibers	Type II b fibers	
contraction time	slow	moderately fast	fast	very fast	
size of motor neuron	small	medium	large	very large	
resistance to fatigue	high	fairly high intermediate		low	
activity used for	aerobic	long-term anaerobic	short-term anaerobic	short-term anaerobic	
maximum duration of use	hours	<30 minutes	<5 minutes	<1 minute	
power produced	low	medium	medium high		
mitochondrial density	high	high	high medium		
capillary density	high	intermediate	low	low	
oxidative capacity	high	high	intermediate	low	
glycolytic capacity	low	high	high	high	
major storage fuel	Triglycerides	CP, glycogen	CP, glycogen	CP, glycogen	

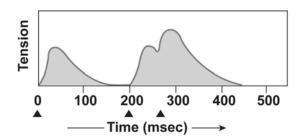
Skeletal Muscle


Types

Copyright © 2009 Pearson Education, Inc.

Skeletal Muscle

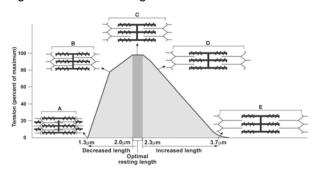
Types


Skeletal Muscle

Strength of Contraction

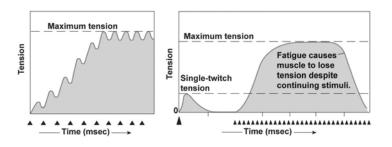
- The response of skeletal muscle to an action potential in a motor neuron is the twitch of the muscle.
- Single twitches may not generate enough force to "get the job done
- What happens when resistance is greater than the force of contraction?
 - Isometric contraction
- How then can a stronger contraction be created in muscle tissue?

Strength of Contraction


- 1. Increase the frequency of action potentials
 - Called summation, as the twitches add together

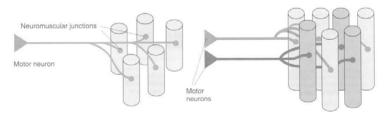
Skeletal Muscle

Strength of Contraction


- 2. alter the length of the muscle prior to contraction
 - Optimal overlap of myosin and actin allows for the generation of a stronger contraction

Skeletal Muscle

Strength of Contraction


- 1. Summation can lead to tetanus
 - unfused and fused depending on frequency of action potentials

Skeletal Muscle

Strength of Contraction

- 3. Increase the number of functional motor units
 - Motor unit is a motor neuron and the muscle fibers it innervates
 - Recruitment is adding additional motor units to increase strength

Strength of Contraction

- 4. Muscle hypertrophy
 - this is an adaptive response to stressing the muscle and causes an increase in the size of muscle cells
 - may be the result of myofibril enlargement or increase in sarcoplasmic volume
- 5. Muscle hyperplasia
 - increase in muscle due to formation of new muscle cells
 - theories vary as to how

General Features

Cardiac Muscle

- Shares features with both skeletal and smooth muscle
 - Like skeletal
 - Striated
 - · sarcomere structure
 - Unlike skeletal
 - · Muscle fibers shorter
 - · may be branched
 - · have single nucleus
 - T-tubules are larger, less frequent and over the z-discs
 - Like smooth
 - Electrically linked to one another; some exhibit pacemaker potentials
 - under sympathetic and parasympathetic control as well as hormone control

Skeletal Muscle

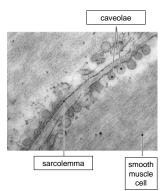
Adaptive Response

Overview	Growth In Muscle Fibers Below					
Repetition Range	Type I	Type IIA	Type IIB (& IIx)	Strength Gains		
1-2 repetitions	Very Low	Low	Low	Excellent		
3-5 repetitions	Very Low	Low	Decent to Good	Excellent		
6-8 repetitions	Very Low	Good	Excellent	Good		
9-12 repetitions	Low	Excellent	Very Good	Good Within Rep R.		
13-15 repetitions	Decent	Very Good	Decent to Good	Endurance		
16-25 repetitions	Very Good	Diminishing	Low	Endurance		
25-50 repetitions	Excellent	Low	Very Low	Endurance		

Table taken from: http://www.criticalbench.com/muscle-fiber-type.htm

Cardiac Muscle

Physiology


- Adaptations for continued contractions
 - Increased vascularity
 - Increased mitochondria
 - Increased levels of myoglobin
 - Adaptation to prevent summation
 - Influx of Ca²⁺ from ECF through L-type Ca²⁺ channels causing a CICR (Calcium Induced Calcium Release) from the sarcoplasmic reticulum sustains the depolarized state which increases the refractory period...
 - More on this later

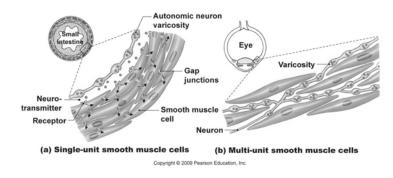
Smooth Muscle

- Functional Characteristics
 - Variations in smooth muscle physiology allow for different autonomic tissues to have different characteristics
 - · Vascular smooth muscle
 - Respiratory smooth muscle
 - · Digestive wall smooth muscle
 - Urinary smooth muscle
 - · Reproductive smooth muscle
 - · Ocular smooth muscle

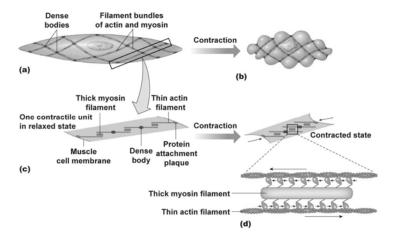
Smooth Muscle

- Functional Characteristics
 - Sarcolemma contains caveolae which contain
 - Receptors
 - prostacyclin, endothelin, serotonin, muscarinic receptors, adrenergic receptors
 - g proteins
 - · Secondary messenger generators
 - Adenylyl cyclase
 - Phospholipase C
 - · ion channels
 - L-type Ca²⁺ channels & K⁺ channels,
 - protein kinases

Smooth Muscle

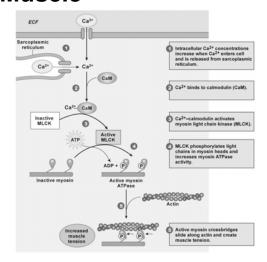

- · Functional Characteristics
 - Contraction is controlled by
 - Acetylcholine
 - Norepinephrine
 - Nitric Oxide
 - Electrical properties and action vary
 - · May depolarize without contraction
 - May hyperpolarize
 - · May contract without a change in membrane potential
 - This results in smooth muscle having many operating parameters and "integrates" the different responses

Smooth Muscle

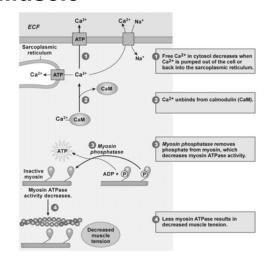

- Functional Anatomical Characteristics
 - actin myosin are longer but still create contractile force
 - Smooth muscle myosin isoform is slower and longer
 - More actin in smooth muscle (10 to 15:1 actin:myosin ratio vs. 2-4:1 ratio in skeletal)
 - actin anchored in focal adhesions (attachment plaques) on the sarcolemma and dense bodies intracellularly
 - Caveolae
 - Contain variety (see previous slides) of membrane receptors and proteins
 - Autonomic nerves terminate with multiple swellings called varicosities

Smooth Muscle

Differences between single and multi-unit smooth muscle



Smooth Muscle


Smooth Muscle

Contraction

Smooth Muscle

Relaxation

