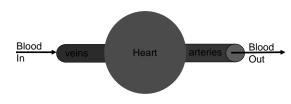
Cell Physiology

Part 3 – Membrane Transport

Membrane Transport

- Key to maintaining homeostasis
 - Homeostasis does not mean equilibrium!
 - Recall what happens if ions are allowed to reach equilibrium across the cell membrane
 - Homeostasis of the internal environment involves movement of materials across the cell membrane (between fluid compartments)
 - · Motive force may be
 - Gradients (passive & active)
 - Cellular Energy (active)

9-08-09 Agenda


- Review Membrane Potentials
- Membrane Transport
 - Passive
 - Active
- Summary of Membrane Function

Membrane Transport

- · Key Concept!
 - Gradients
 - Any situation where something is higher in one area and lower in another area
 - may be a:
 - pressure gradient (liquid or gas)
 - concentration gradient (chemical)
 - · may occur within a compartment
 - Bulk Flow
 - · may occur between compartments
 - Simple Diffusion
 - Facilitated Diffusion (utilizes channel proteins or carrier proteins)
 - Osmosis
 - · may be established by using energy!

Membrane Transport Bulk Flow

- Bulk Flow
 - Movement within a compartment due to a pressure gradient
 - Pressure moves blood within plasma
 - · Pressure moves air within respiratory tract

Is energy required?

Membrane Transport

- Passive Movement
 - Requires?
 - Types:
 - Simple Diffusion
 - Osmosis
 - · Facilitated Diffusion

Membrane Transport

Simple Diffusion

- Defined:
 - The movement of substances other than water from areas of high concentration to areas of low concentration
 - Area of high to area of low defines a gradient
 - The movement of substances other than water down its gradient
- What causes this movement?

Membrane Transport

Simple Diffusion

 Molecular motion – the inherent kinetic energy of molecules due to sub atomic forces and collisions with other molecules

Link to Motion Applet

- The main factors that influence molecules moving across a cell membrane are
 - SizeLipid solubility
 - Gradient Size
 - Temperature

extrinsic diffusion factors

Distance to diffuse

Simple Diffusion

Seven good things to know about diffusion:

- 1. it's passive,
- 2. movement occurs down a gradient,
- 3. movement occurs until concentration reaches, equilibrium*,
- 4. occurs in an open system or across a membrane that is at least selectively permeable,

Rates of diffusion are determined by

- 5. Distance,
- 6. Temperature,
- Molecular size.

Membrane Transport

Simple Diffusion

Fick's law of diffusion wraps it all up nicely!

	Surface	v	concentration	v	membrane
Rate of diffusion ∝ · (is approximately)	area	^	gradient	^	permeability
	membrane thickness				

Membrane permeability is the most difficult as membrane permeability changes with lipid solubility and the size/characteristics of the molecule diffusing across!

Membrane Transport

Simple Diffusion

- Phospholipid Bilayers & Diffusion
 - lipophilic molecules v hydrophilic molecules
 - · Lipophilic molecules can move my simple diffusion
 - · Hydrophilic molecules require facilitation!
 - Rate of diffusion across depends on
 - Ability of molecules to get through the inner hydrophobic section of the membrane
 - · Lipids, steroids, and small lipophilic molecules
 - Water slowly and depends on cholesterol content of the cell membrane
 - 2. The surface area available for diffusion
 - 3. The thickness of the cell membrane

Membrane Transport Osmosis

- Defined:
 - The movement of water from an area of low solute concentration to an area of high solute concentration or....
 - The movement of water from an area of high water concentration to an area of low water concentration
- · this ONLY concerns the movement of water

^{*}equilibrium will vary depending on other forces acting on it

Membrane Transport Osmosis

- When will water move?
 - 1. When a gradient is established AND
 - 2. There is a pathway
- obligatory vs. facultative water movement

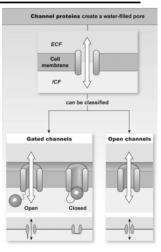
Membrane Transport

Facilitated Diffusion

- · Facilitated Diffusion:
 - Movement of charged or lipophobic molecules down their concentration gradients AIDED by
 - SLC (solute carriers) superfamily transporter proteins
 - 1. water filled
 - » fast but limited in transport ability
 - 2. carrier proteins
 - » slower but can transport larger molecules
 - Is still a passive process
 - No ATP required
 - · Stops once its equilibrium is reached

Membrane Transport Osmosis

- osmosis related health issue:
 - Why can eating a bag of salty chips (every day) cause a change in blood pressure?


Membrane Transport

Facilitated Diffusion

- 1. Water filled channel proteins
 - Aquaporins (membrane protein)
 - Allow passage of water
 - Ion channels
 - Specific to size, charge
 - Specificity determined by
 - Diameter of pore
 - Electrical charge of amino acids in the channel

Facilitated Diffusion

- May be open or gated channels
 - Open channels are open most of the time or have no gates
 - Gated channels spend most time in the closed configuration and are
 - Chemically gated
 - Voltage gated
 - Mechanically gated
 - Light gated

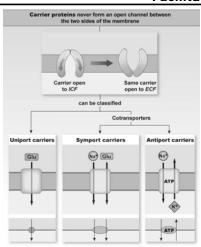
Membrane Transport

Facilitated Diffusion

2. Carrier Proteins

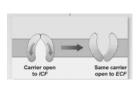
- Do not form channels that are open to both the ECF and ICF
- Move larger molecules across the membrane
- Operate as
 - A. Uniports(1)
 - · Example Glucose & Amino Acids
 - B. Cotransporters⁽¹⁾, ⁽²⁾

1-not all carrier proteins operate in a passive mode 2-typically operate as secondary active transporters


Membrane Transport

Facilitated Diffusion

- Uniport Carrier Proteins
 - Transport one type of molecule & only in one direction
- Cotransport Carrier Proteins
 - Transport more than one type in
 - Symports
 - the same direction
 - Anitports
 - the opposite direction
 - Requires ATP (NOT USED IN FACILITATED DIFFUSION)


Membrane Transport

Facilitated Diffusion

Facilitated Diffusion

- Movement using carrier proteins requires conformational change upon binding of molecules
 - This is why they are slow(er)
 - 1,000 to 1X10⁶ molecules/sec compared to channels which are a factor of 10 faster!

VS.

Membrane Transport

Active Transport

- Energy is used to transport molecules against their gradient in Primary Active Transport
 - ATP provides the energy (Table 5-2)
 - Na+/K+ ATPase & H+/K+ ATPase (anitports)
 - Ca²⁺ ATPase & H⁺ ATPase (uniports)
- The potential energy created by the gradient may be utilized to operate protein carriers in Secondary Active Transport
 - [Na+] gradient (established by primary active transport) is used to cotransport (*Table 5-3*)
 - Na+, K+, Cl-, Ca²⁺, glucose, bile salts, choline, neurotransmitters

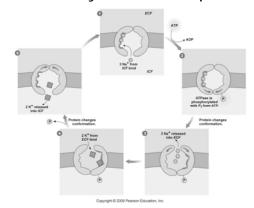
Membrane Transport

- Review Membrane Potentials
- Membrane Transport
 - Passive
 - Active
- Summary of Membrane Function

Membrane Transport

Active Transport

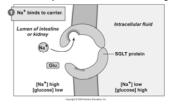
- Primary Active Transport Carrier Proteins also function as enzymes
 - ATP binds to the active site
 - One phosphate bond is broken
 - Phosphate is attached to the carrier protein
 - Induces a conformational change
 - Phosphate is released after transporter function has occurred, returning carrier protein to it's original conformation
- Remember that because these are proteins they operate on the three protein assumptions of
 - Specificity
 - Competition
 - Saturation

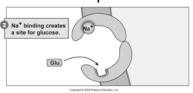

Active Transport

- Active Transport also involves Vesicular Transport
 - Phagocytosis
 - Endocytosis
 - Pinocytosis
 - · Receptor Mediated Endocytosis
 - Potocytosis
 - Exocytosis
 - Combined actions include transcytosis
 - Transports across epithelium in a vessicle

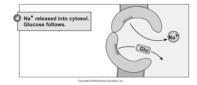
Membrane Transport

Active Transport

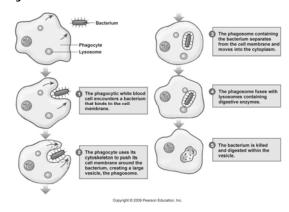

Example: Primary Active Transport



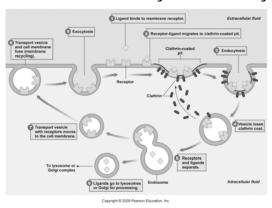
Membrane Transport


Active Transport

Example: Secondary Active Transport

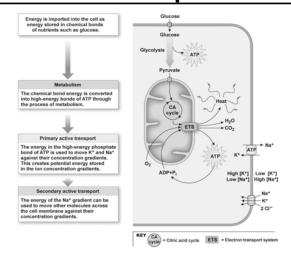


Membrane Transport

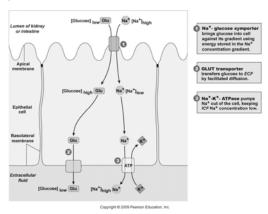

Active Transport

Phagocytosis

Active Transport


Receptor Mediated Endocytosis & Exocytosis

Membrane Transport


- Integrated Concept
 - Using membrane transport properties in more than one process... the link between glucose, ATP and membrane potential

Membrane Transport

Membrane Transport

• Integrated Concept: Transepithelial transport

