# Hormones & Chemical Signaling

Part 2 – modulation of signal pathways and hormone classification & function

# Communication

**Modulation of Signal Pathways** 

- Specificity of Binding & Competition
  - Receptors have specific binding sites
  - Different compounds with similar molecular regions may bind to same site = competition
  - Ex. Epinephrine & norepinephrine have similar ligand structure and bind to a class of receptors called adrenergic receptors
    - · Adrenergic receptors exhibit specificity
    - · Adrenergic receptors are influence by competition

## Communication

**Modulation of Signal Pathways** 

- How are these pathways controlled?
  - Receptors are proteins!
    - · Subject to
      - Specificity of binding
      - Competition for binding site
        - » Agonists and antagonists
      - Saturation of ligand
        - » Up regulation and down regulation of receptors
  - Pathways are mechanisms under homeostasis guidelines

# Communication

#### **Modulation of Signal Pathways**



 (a) cAMP pathway initiated by activation of β-adrenergic receptor (b) Inositol-phospholipid-calcium pathway initiated by activation of α,-adrenergic receptor

**Modulation of Signal Pathways** 

- Advances in medicines
  - Due to study of active sites and their properties
    - Slightly changing the non-binding areas may change the duration of action



# Communication

**Modulation of Signal Pathways** 

- Agonists vs. Antagonists
  - Agonists bind and cause activation
  - Antagonists bind and stop or prevent activation



# **Communication: Deadly Effects**

Muscarinic receptors



- Bind acetylcholine (Ach) in the autonomic nervous system (ANS)
- Also binds muscarine (a mushroom toxin) that
  - Mimics Ach (agonistic action) and can cause a severe parasympathomimetic to the point of death
- · Nicotinic receptors
  - Bind Ach at neuromuscular junctions



- Also binds curare (poison arrow frog toxin) and blocks the receptor (antagonistic action)
  - · Causes paralysis and very potentially death

# Communication

**Modulation of Signal Pathways** 

- · Up and Down-Regulation
  - Why?
    - To allow cells the ability to control the extent of signal pathway effect depending on
      - The concentration of signal in the ECF
      - The needs of the cell
      - Which form of diabetes would result in up and down regulation of insulin receptors?
    - Down-regulation vs desensitization
      - Down regulation is slower as cell needs to remove receptors from membrane
      - Desensitization is quicker as a binding agent can deactivate the receptor
        - » For ex. adding a phosphate can deactivate a receptor ( $\beta$  adrenergic receptors)

**Modulation of Signal Pathways** 

- When the process has to stop
  - Enzymatic degradation of ligand
  - Removal of ligand by re-uptake
  - Endocytosis of receptor-ligand complex
    - Receptors can be reinserted into the membrane
- Why do we care about this process?
  - Disease & Disorders

# Communication

## **Pathways**

- Controlled by homeostatic mechanisms regardless of type of pathway and resulting transduction of signal.
- What are the options for getting the signal to the cell for transduction?

# Communication

**Modulation of Signal Pathways** 

|                                         | or Conditions Linked to Abnormal Sign                          |                                                                 |
|-----------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|
| Genetically inherited abnormal receptor | ors                                                            |                                                                 |
| RECEPTOR                                | PHYSIOLOGICAL ALTERATION                                       | DISEASE OR CONDITION THAT RESULT                                |
| Vasopressin receptor (X-linked defect)  | Shortens half-life of the receptor                             | Congenital diabetes insipidus                                   |
| Calcium sensor in parathyroid gland     | Fails to respond to increase in plasma $\mbox{\sc Ca}^{2+}$    | Familial hypercalcemia                                          |
| Rhodopsin receptor in retina of eye     | Improper protein folding                                       | Retinitis pigmentosa                                            |
| Toxins affecting signal pathways        |                                                                |                                                                 |
| TOXIN                                   | PHYSIOLOGICAL EFFECT                                           | CONDITION THAT RESULTS                                          |
| Bordetella pertussis toxin              | Blocks inhibition of adenylate cyclase (i.e., keeps it active) | Whooping cough                                                  |
| Cholera toxin                           | Blocks enzyme activity of G proteins; cell keeps making cAMP   | lons secreted into lumen of intestine, causing massive diarrhea |

Copyright © 2009 Pearson Education, Inc

# Communication

**Pathways** 



#### **Pathways**

Similarities between neural and endocrine pathways?

| TABLE 6-4 Compa               | rison of Neural and Endocrine Control                                                                                                                                                 |                                                                                                                              |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| PROPERTY                      | NEURAL REFLEX                                                                                                                                                                         | ENDOCRINE REFLEX                                                                                                             |
| Specificity                   | Each neuron terminates on a single target<br>cell or on a limited number of adjacent tar-<br>get cells.                                                                               | Most cells of the body are exposed to a hor-<br>mone. The response depends on which cells<br>have receptors for the hormone. |
| Nature of the signal          | Electrical signal passes through neuron, then<br>chemical neurotransmitters pass the signal<br>from cell to cell. In a few cases, signals<br>pass cell-to-cell through gap junctions. | Chemical signals are secreted in the blood<br>for distribution throughout the body.                                          |
| Speed                         | Very rapid.                                                                                                                                                                           | Distribution of the signal and onset of action are much slower than in neural responses.                                     |
| Duration of action            | Usually very short. Responses of longer duration are mediated by neuromodulators.                                                                                                     | Duration of action is usually much longer than in neural responses.                                                          |
| Coding for stimulus intensity | Each signal is identical in strength. Stimulus intensity is correlated with increased frequency of signaling.                                                                         | Stimulus intensity is correlated with amount of hormone secreted.                                                            |

# Communication

#### **Pathways**

The homeostatic pathways are

| TABLE 6-5          | Comparison of Neural, Neuroendocrine, and Endocrine Reflexes                |                                                                           |                                                                      |  |
|--------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------|--|
|                    | NEURAL                                                                      | NEUROENDOCRINE                                                            | ENDOCRINE                                                            |  |
| Sensor or receptor | Special and somatic sensory receptors                                       | Special and somatic sensory receptors                                     | Endocrine cell                                                       |  |
| Afferent pathway   | Afferent sensory neuron                                                     | Afferent sensory neuron                                                   | None                                                                 |  |
| Integrating center | Brain or spinal cord                                                        | Brain or spinal cord                                                      | Endocrine cell                                                       |  |
| Efferent pathway   | Efferent neuron (electrical signal and neurotransmitter)                    | Efferent neuron (electrical signal and neurohormone)                      | Hormone                                                              |  |
| Effector(s)        | Muscles and glands, some adipose tissue                                     | Most cells of the body                                                    | Most cells of the body                                               |  |
| Response           | Contraction and secretion<br>primarily; may have some<br>metabolic effects. | Change in enzymatic reactions,<br>membrane transport, or cell<br>proteins | Change in enzymatic reactions or membrane transport or cell proteins |  |

# Communication

#### **Hormones**

- What are they?
  - Chemical messengers secreted by specialized cells
    - from isolated endocrine cells which makes up the diffuse endocrine system
    - · from neurons
    - · from immune system cells producing cytokines
  - Where do they go?
    - Into blood (most)
    - Into environment (ectohormones or pheromones)

# Communication

### **Hormones**

- Involved in
  - Growth
  - Development
  - Metabolism
  - · Reproduction
- Act by
  - 1. Altering rates of enzyme mediated reactions
  - 2. Control the movement of molecules across the plasma membrane
  - 3. Regulating the rate of gene expression (& therefore protein production)

#### **Hormones**

- How do hormones get from point A to B?
  - To be classified as hormone & not a paracrine or autocrine hormone
  - Travel in blood
    - May require water soluble (protein) transport mechanism if hormone is lipid soluble
- Hormones act by binding to receptor on target cells
- Hormones have to have a mechanism for ending the effect
  - Stop/reduce production of hormone
  - Degrate hormones
  - Enzymatic removal from receptor
  - Endocytosis of receptor-hormone complex

# Communication

**Hormone Classification** 

- · Hormones are mainly classified by
  - Source
  - Structure

# Communication

**Hormone Classification** 

• Hormones classified by source



# Communication

**Hormone Classification** 

· Hormones classified by source



**Hormone Classification** 

- Hormones classified by structure
  - Peptide/protein hormones
  - Steroid hormones
  - Amino acid based hormones
    - · Derived from tyrosine and may be
      - Catecholamines
      - Thyroid hormones

# Communication

**Hormone Classification** 

· Peptide/protein hormones & how they are made, stored and released



## Communication

**Hormone Classification** 

- Peptide/protein hormones
  - Classification that includes most hormones
  - If a hormone is not a steroid hormone or an amino acid derived hormone, then it is a protein/peptide hormone!
    - Concerns with these hormones
      - How they are made, stored and released
      - How they are transported in blood
      - The mechanism of action
      - How long they last

# Communication

**Hormone Classification** 



**Hormone Classification** 

- Peptide/protein hormones
  - Cellular action mechanism
    - Lipophobic must bind to receptors on membrane's ECF surface
    - Most work via cAMP messenger system
    - Some via receptor-enzyme complexes
      - Enzyme attached and activated by binding is tyrosine kinase (recall these enzymes phosphorylate various substrates)
        - » Insulin binds, tyrosine kinase activated and phosphorylates glucose to glucose 6-phosphate

# Communication

**Hormone Classification** 

- Peptide/protein hormones
  - Duration
    - Depends on method of hormone action termination
    - Depends on molecule (some synthetic hormones have been modified to last longer)

# Communication

**Hormone Classification** 

- Steroid Hormones
  - Lipophilic creates problems
    - No storage
    - · Production is on an "as needed" basis
    - Can have the precursors in cytoplasm ready to go
    - Require protein transports in blood
      - prolongs duration of hormone
      - Blocks entrance into cell... it must disengage from carrier this follows law of mass action...

# Communication

**Hormone Classification** 

- Steroid hormones
  - Based on cholesterol
  - Produced using SER in the
    - · Adrenal cortex
    - Gonads
    - Placenta
  - Secretion is by simple diffusion



#### **Hormone Classification**

- Steroid Hormones
  - Cellular mechanism of action
    - · Diffuses into cytosol and or into the nucleus
    - Acts as a transcription factors in the nucleus to alter gene activity by
      - Repressing or activating rates of transcription
    - Lag period due to the processes that have to occur
    - Transcription factors have DNA binding domains (DBDs) that tells them where to bind on the DNA (there are approx. 2000 known human transcription factors with specific DBDs
    - · How are they regulated?
      - Negative feedback loop increased transcription factors cause a decrease in production
      - Phosphorylation may stop transcription
      - Ligand binding to transcription factors or cofactors that regulate the transcription factors...

# Communication

#### **Hormone Classification**

Steroid Hormone Action



Copyright © 2009 Pearson Education, Inc.

- New(er) research indicates that some steroid hormones have membrane receptors and signal transduction pathways similar in process to peptide/protein hormones
  - Nongenomic actions also attributed to aldosterone and estrogen



PMID: 8936679 [PubMed - indexed for MEDLINE]

from

# Communication

#### **Hormone Classification**

· Amino acid derived hormones may be



**Hormone Classification** 

· Amino acid derived hormones may be

# Communication

**Hormone Controls** 

- Hormones are controlled by reflex pathways most utilizing negative feedback loops!
  - May have multiple controls though



<sup>\*</sup>serotonin is classified as a neurohormone as it is synthesized and secreted by neurons of the GI tract for regulation of motility and CNS