Fluid, Electrolyte and Acid Base Balance

Integrating Respiratory, Urinary and Digestive Physiology

Body Fluid, Fluid Compartments & Fluid Balance

- What is body fluid?
 - Water and solutes located in fluid compartments
 - 45-75% of body weight is due to fluid (water)
 - Variations due to differences between individuals and adipose levels
- ECF vs. ICF Fluid Compartments
 - 2/3 of fluid in the body is in the ICF compartment
 - 1/3 of the fluid in the body is in the ECF
 - · made up of:

interstitial fluid plasma CSF GI fluids
pleural fluid pericardial fluid
lymph ocular fluid
peritoneal fluid synovial fluid
glomerular
auditory fluid filtrate

Lecture Outline

- Body Fluid, Fluid Compartments
- · Body Water
 - Regulation of Gain
 - Regulation of Loss
- · The Electrolytes
- Movement of body fluids
 - between plasma and interstitial fluid
 - between interstitial and intracellular
- · Acid Base Balance
 - Buffer systems
 - Exhalation of Carbon Dioxide
 - Kidney Excretion
- · Acid Base Imbalances
 - Acidosis vs Alkalosis

Gain (inputs) vs. Loss (outputs) of Body Water

- Net Balance
 - Gain = Loss
- Balance between ECF and ICF
 - Movement of water depends on makeup of individual compartments

Copyright © 2009 Pearson Education, Inc.

Regulation of Gain & Loss

- Gain & Loss controlled by?
 - Water intake & water reabsorption!
 - Loss of fluid possibly manifests as
 - Drop in MAP!
 - Too much fluid possibly manifests as
 - Elevation in MAP!

Affect of Vasopressin

Regulation of Gain & Loss

• Drop in blood pressure initiates...

Regulation of Gain & Loss

Electrolyte Function

- Job of the urinary system to regulate the volume and composition of the ECF
 - And therefore the ICF as well!
- What do the electrolyte portion of the composition of body fluids do?
 - 1. Controls osmolarity (and therefore movement of fluid between the compartments)
 - 2. help to maintain the acid base balance
 - carry electrical current within the body

Electrolyte Function

- 4. Bicarbonate ions (HC0₃⁻)
 - a. second most abundant anion in ECF
 - b. THE MOST IMPORTANT BUFFER IN PLASMA!
- 5. Calcium an extracellular cation
 - a. very important mineral as it is a structural one (bones & teeth)

 - b. plays a role in hemostasis c. neurotransmitter release
 - d. contraction of muscle
 - e. controlled by PTH and CT calcitonin
- 6. Phosphate ions ICF anions (H₂PO₄-, HPO₄²-, PO₄³-)
 - a. structural components of teeth and bone
 - b. needed for nucleic acid synthesis, ATP synthesis
 - c. also used in buffering reactions in the cell
 - d. controlled by PTH and CT
- 7. Magnesium (Mg²⁺) ICF cations mostly
 - a. acting as cofactors (aiding in enzyme reactions)

Electrolyte Function

- What are the main electrolytes?
 - 1. Na+ most abundant ECF ions (cation)
 - a. impulse transmission
 - b. muscle contraction
 - c. water balance
 - d. controlled by aldosterone in kidney
 - 2. Chloride ions major extracellular anions
 - a. regulate osmotic pressure
 - b. involved in pH as they will form HCI
 - c. controlled by aldosterone (why? -- follows Na+)
 - 3. Potassium ions most abundant cations in ICF
 - a. maintaining fluid volume
 - b. impulse conduction
 - c. muscle contractions
 - d. regulating pH
 - e. controlled by aldosterone

Intercompartmental Fluid Movement

- A. between plasma and interstitial fluid
 - at arterial end
 - · filtration occurs in a capillary moving fluid into the interstitial space
 - at venous end
 - · reabsorption moves fluid back into the capillary
 - 3 L/day is not reabsorbed and is returned via the lymphatic
- B. between interstitial and intracellular fluids
 - movement here depends on the concentrations of Na⁺ and K⁺
 - · which is controlled by the kidney in response to aldosterone, ADH (vasopressin) and ANP
- C. if there is an imbalance in osmolarity?
 - hypovolemic shock (not enough blood volume)
 - water intoxication

Osmolarity vs. Volume

		Decrease	Osmolarity No change	Increase
Volume	Increase	Drinking large amount of water	Ingestion of isotonic saline	Ingestion of hypertonic saline
	No change	Replacement of sweat loss with plain water	Normal volume and osmolarity	Eating salt without drinking water
	Decrease	Incomplete compensation for dehydration	Hemorrhage	Dehydration (e.g., sweat loss or diarrhea)

Acid Base Balance

- Normal range of pH
 - -7.38 7.42
- Controlled by systems which maintain H+ levels:
 - Buffering Systems, Ventilation Rates, & Renal Function Buffering System
 - 1. PROTEINS

Hemoglobin when reduced can also pick up H+ in RBC's and is used in conjunction with the bicarbonate buffering system

Lecture Outline

- Body Fluid, Fluid Compartments
- Body Water
 - Regulation of Gain
 - Regulation of Loss
- The Electrolytes
- Movement of body fluids
 - between plasma and interstitial fluid
 - between interstitial and intracellular
- Acid Base Balance
 - Buffer systems
 - Exhalation of Carbon Dioxide
 - Kidney Excretion
- Acid Base Imbalances
 - Acidosis vs Alkalosis

Acid Base Balance

Buffering System 2. Bicarbonate buffering system

$$H_2O + CO_2 \leftrightarrow H_2CO_3 \leftrightarrow HCO_3^- + H^+$$

Buffering System 3. Phosphate buffering system

$$OH^- + H_2PO_4^- \longleftrightarrow H_2O + HPO_4^{2-}$$

 $H^+ + HPO_4^{2-} \longleftrightarrow H_2PO_4^{-}$

Any molecule capable of picking up H ion can act as a buffer: such as ammonia (NH3)

Acid Base Balance

- Ventilation Rates & Effect on pH Balance
 - It's all about CO₂ and the bicarbonate buffering system
 - Increased ventilation rate causes
 - Removal of CO2 and H2O
 - Drives this reaction to ...?

$$H_2O + CO_2 \leftrightarrow H_2CO_3 \leftrightarrow HCO_3^- + H^+$$

- hyperventilation drives the reaction to the left causing removal of H⁺, pH goes up
- Hypoventilation drives the reaction to the right, causing additional H+, pH goes down

Acid Base Imbalances

- What happens when there is an abundance (or lack) of H+?
 - Acidosis = too much H+ causing pH to drop
 - Alkalosis = too little H+ causing pH to rise
 - The urinary and respiratory systems work together to control and maintain pH within homeostatic parameters
 - Urinary system works slower
 - · Respiratory system works almost immediately
 - · The systems will compensate for each other if needed

Acid Base Balance

- Renal Function
 - Through the aspects of tubular secretion and reabsorption
 - Bicarbonate (HCO₃-) is produced and reabsorbed, acting as a buffer, stabilizing pH
 - H⁺ is capable of being secreted and excreted, reducing its concentration and causing pH to go up.

Acid Base Imbalance

 Overview of H⁺ inputs and outputs as well as controlling mechanisms

Acid Base Imbalance

Acidosis – occurs when the blood pH is below 7.38 Causes may be respiratory or metabolic (kidney):

1. respiratory acidosis

elevation of P_{CO2} levels in arterial blood causes the pH to drop due to decreased movement of CO₂ from lungs to the air

- why?
 - emphysema, pulmonary edema, medullary injury, airway obstruction, disorders of the muscle
- effects?
 - Kidneys increase secretion of H+ ions and absorption of HCO₃- ions (metabolic compensation)
- treatments?
 - increase exhalation of CO₂, IV of HCO₃- artificial respiration, suction, and ventilation therapy

Acid Base Imbalance

Alkalosis – occurs when the blood pH is above 7.42 Causes may be respiratory or metabolic (kidney):

1. respiratory alkalosis

decreased P_{CO_2} levels in arterial blood causes the pH to rise due to increased movement of CO₂ from lungs to the air

- why?
 - Hyperventilation due to
 - voluntary behavior
 - oxygen deficiency at high altitudes
 - pulmonary dysfunction, stroke, anxiety
- effects?
 - Kidneys stop excreting H+, and reabsorbing bicarbonate creates a metabolic compensation
- treatments?
 - Rebreathe CO₂, treat underlying behavior, reduce altitude

Acid Base Imbalance

2. Metabolic Acidosis

blood concentration of HCO₃- drops (*↓* 22mEq/L)

•because it is a buffer, the blood will loose its ability to pick up H+ and will become more acidic (lower pH)

Causes?

- 1. Loss of HCO₃- (diarrhea or renal failure)
- 2. accumulation of acid (ex. ketosis)
- 3. kidnev's failure to excrete H+ from metabolism of dietary protein

Effects?

causes hyperventilation (respiratory compensation)

Treatments?

IV solutions of sodium bicarbonate (NaHCO₃), and fixing the problem

Acid Base Imbalance

1. Metabolic alkalosis

blood HCO₃ concentration increases (7 26 mEq/L)

- Cause?
 - · can be due to loss of acid not related to respirations
 - ex. vomiting most common, diuretics, endocrine problems
 - · Overconsumption of antacids
 - severe dehydration
- effects?
 - · causes hypoventilation (quick temp. fix)
- treatments?
 - · fluid electrolyte therapy for electrolyte fixing (gatorade)
 - · remedying the cause of distress

Acid Base Imbalances

- How can you tell which is the cause of altered pH?
 - 1. Determine if pH is high (acidosis) or low (alkalosis)
 - 2. Determine if the ${\rm PCO_2}$ is high or low, or if the ${\rm HCO_3}$ is high or low
 - This will be the primary cause
 - 3. If a change in P_{CO_2} , the cause is respiratory, and if the change is in the HCO_3 -, then the cause is metabolic
 - 4. If both are out of balance, then compensation is occurring.

Ex. conditions:

pH = 7.48 alkalosis HCO_{3} - = 30 mEq/L **High** Agrees! Can be the primary cause! $P_{CO_{2}}$ = 45 mm Hg High Disagrees with the observed pH, can't be the primary cause of condition!

Metabolic alkalosis with respiratory compensation.

So....

- Why do we care about ion balance?
- Why do we care about pH?

TABLE 20-2	BLE 20-2 Plasma P _{CO2} , lons, and pH in Acid-Base Disturbances				
DISTURBANCE	P_{CO_2}	H ⁺	PH	HCO ₃	
Acidosis					
Respiratory	\uparrow	\uparrow	\downarrow	\uparrow	
Metabolic	Normal* or \downarrow	\uparrow	\downarrow	\downarrow	
Alkalosis					
Respiratory	\downarrow	\downarrow	\uparrow	\downarrow	
Metabolic	Normal* or ↑	\downarrow	\uparrow	\uparrow	

^{*} These values are different from what you would expect from the law of mass action because almost instantaneous respiratory compensation keeps P_{CO2} from changing significantly.

Copyright © 2009 Pearson Education, Inc.