Digestive Physiology

Lecture Outline

• Basic GI functions
• Regulation of GI function
• Phases of Digestion
• Absorption
• Protective Function of the GI tract

Basic GI Functions

• Primary function
 – Movement of nutrient molecules from the external environment to the internal environment
 • Done through the processes of:
 – Motility
 – Secretion
 – Digestion
 – Absorption

• Secondary functions
 – Mass balance
 • Ensuring daily fluid input and output are equal
 – Protection
 • GI tract provides a huge external surface for pathogens to gain entrance into the internal environment
Lecture Outline

- Basic GI functions
- **Regulation of GI function**
- Phases of Digestion
- Absorption
- Protective Function of the GI tract

Regulation of GI Function

Long & Short Reflexes

- **Long Reflexes**
 - Integrated within the CNS
 - May originate in or outside of the GI tract
 - Feedforward & emotional reflexes are initiated and integrated entirely outside the GI tract
 » Called cephalic reflexes
- **Short Reflexes**
 - Integrated in the enteric nervous system
 - Initiated by changes in pH, distension, osmolarity, products of digestion
 - Submucosal plexus contains the sensory neurons
 - Afferent information to ganglia
 - Efferent information to submucosal and myenteric plexuses for control of secretion, motility and growth

Regulation of GI Function

- What is regulated?
 - All aspects of the GI processes
- Regulated by
 - In general the signals are:
 • Neural
 • Hormonal
 • Paracrine
 - Specifically the controls and systems are:
 • The Long & Short Reflexes
 • GI peptide reflexes
 • The autonomous function of the enteric nervous system (ENS)
Regulation of GI Function

GI Peptide Reflexes

• Peptides released by the GI tract may act
 – As hormones
 • Secreted into the blood
 • Act on accessory organs, other parts of the GI tract or the brain
 – As paracrine signals
 • Secreted into the lumen or extracellular fluid
 – Lumenal signals bind to apical epithelial receptors
 – ECF signals act in the immediate vicinity of secretion
 – Effect
 • Peptides alter secretion and motility
 • Alter behavior related to eating

Regulation of GI Function

Enteric Nervous System

• Allows for the autonomous behavior of the digestive system
 – CNS control is not required for digestive functioning
 – Commonalities between ENS and CNS
 • Intrinsic neurons – similar to interneurons of CNS
 • Extrinsic neurons – composed of autonomic neurons
 • Neurotransmitters and neuropeptides
 – Nonadrenergic and noncholinergic receptors
 » Same as adrenergic and cholinergic in CNS
 • Glial support cells – similar to astrocytes in CNS
 • Diffusion barrier – cells around capillaries in the ganglia are tight, just as the capillaries in the brain, forming the BBB
 • ENS acts as its own integrating center, just as the CNS does

Regulation of GI Function

GI Peptide Reflexes

<table>
<thead>
<tr>
<th>TABLE 21-1 The Digestive Hormones</th>
</tr>
</thead>
<tbody>
<tr>
<td>STIMULUS FOR RELEASE</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>Gastrin family</td>
</tr>
<tr>
<td>Fatty acids and some amino acids</td>
</tr>
<tr>
<td>Secretin family</td>
</tr>
<tr>
<td>Acid and small intestine</td>
</tr>
<tr>
<td>Peptide family</td>
</tr>
<tr>
<td>Fasting periodic release every 1-2 hours</td>
</tr>
<tr>
<td>Glucose, fatty acids, and purines in small intestine</td>
</tr>
<tr>
<td>Secretin family</td>
</tr>
<tr>
<td>Mixed meal that stimulates cholecystokinin or fats in the lower intestine</td>
</tr>
</tbody>
</table>

Lecture Outline

• Basic GI functions
• Regulation of GI function
• Phases of Digestion
• Absorption
• Protective Function of the GI tract
Phases of Digestion

Cephalic Phase

- Starts with the external stimulus of food
 - Response from cerebral cortex, hypothalamus and amygdala is to activate neurons [vagus nerve (X)] in the medulla oblongata which
 - Sends ANS signals to
 - Salivary glands via branches of facial n. & glossopharyngeal n. (parasympathetic), sympathetic innervation via branches from T1-3
 » Increases saliva production along with salivary amylase, lysozymes, immunoglobulins and lingual lipase
 » Starts chemical digestion
 - Enteric nervous system via vagus nerve
 » Gastric secretions and motility increase in preparation
 » Accounts for approximately 20% of gastric secretions while eating

- What goes on once food is in the mouth?
 - Secretion of saliva
 - Physical digestion via mastication
 - Chemical digestion via salivary amylase and lingual lipase (from Von Ebner’s Glands)
 - Preparation for swallowing (deglutition reflex)
 - Bolus pushed against soft palate by tongue to trigger reflex
 - UES (upper esophageal sphincter) relaxes, larynx elevates as epiglottis bends to cover trachea
 - Peristalsis and gravity moves bolus down esophagus to stomach

Gastric Phase

- Deglutition reflex (swallowing) moves food to the stomach to start the gastric phase
 - 3.5 liters of content/day enters fundus
 - Controlled by long (vagal reflex) and short (distention & peptides/amino acids) reflexes

- What does the stomach do?
 1. Stores incoming food
 2. Digests the food into chyme
 - By action of pepsin and mechanical digestion (churning)
 3. Protection
 - Acidic gastric environment
 - Mucous provides “self” protection
Phases of Digestion

Gastric Phase

1. Stores incoming food
 - Fundus exhibits receptive relaxation
 - Controls movement into the duodenum
 • Storage becomes important when more food than is required enters the stomach
 • Too much into the duodenum would spell colonic disaster!

2. Digests the food into chyme
 - By continuation of salivary amylase until denatured
 - By action of secretions
 • Parietal cells secrete HCl (gastric acid) and intrinsic factor
 - HCl dissociates into H⁺ and Cl⁻
 - Intrinsic factor required for B₁₂ absorption in the intestine
 • Chief cells secrete pepsinogen & gastric lipase
 - Pepsinogen is converted to pepsin by the action of H⁺
 - Pepsin is an endopeptidase
 • Mucous neck cells
 - Secrete mucus for protection
 • Enterochromaffin-like cells
 - Secrete histamine in response to parasympathetic activity and gastrin and increases parietal cell
 • D cells
 - Secrete somatostatin when pH drops to inhibit further parietal cell secretions
 • G cells
 - Secrete gastrin to stimulate parietal cells, also relaxes ileocecal sphincter, increases pyloric sphincter activity and lower stomach motility

Cephalic Phase

3. Protection
 - Acidic gastric environment
 - Mucous provides “self” protection

Gastric juice pH ~ 2

The mucus layer is a physical barrier.

HCO₃⁻ Bicarbonate is a chemical barrier that neutralizes acid.

pH ~ 7 at cell surface
Phases of Digestion
Integration of Cephalic & Gastric Phases

Phases of Digestion

Integration of Cephalic & Gastric Phases

Phases of Digestion

Intestinal Phase

- The final products of the cephalic and gastric phase is
 - Digestion of proteins
 - Formation of chyme
 - Controlled entry of chyme into the intestine
 - Starts the intestinal phase which contains loops that
 - Feed back to further control gastric emptying
 - Feed forward to promote digestion, secretion, motility and absorption of nutrients
 - Signals are hormonal & neural

Phases of Digestion

Intestinal Phase

- Hormonal and neural aspects of the intestinal phase
 - entrance of chyme into duodenum gets the enteric nervous system going, secreting:
 - Secretin
 - slows gastric emptying & gastric acid production
 - Stimulates bicarbonate (HCO_3^-) production from pancreas to buffer acidic chyme
 - cholecystokinin (CCK)
 - Secreted in response to lipids and slows gastric motility and gastric acid secretion
 - Acts hormonally on the hypothalamus,
 - Incretin hormones (GIP and GLP-1)
 - GIP (gastric inhibitory peptide)
 - GLP-1 (glucagon-like peptide1)
 - Slow gastric acid and emptying
 - stimulate insulin release from pancreas

Major processes occurring in the intestinal phase

- Buffering
 - Via pancreatic exocrine secretion
- Digestion
 - By pancreatic exocrine secretion
 - Trypsinogen, chymotrypsinogen, procarboxypeptidase, procolipase and prophospholipase
 - By bile release from gallbladder (stimulated by CCK)
 - Bile emulsifies the lipids, increasing surface area for pancreatic lipases
 - By intestinal mucosal enzymes (brush border enzymes) that are “anchored” to apical surface
 - Peptidases, disaccharidases, enteropeptidase
- Absorption
 - Most of the water & nutrients are absorbed in the small intestine
Phases of Digestion

Intestinal Phase

• Activation of pancreatic proteolytic enzymes

Phases of Digestion

Integration of Intestinal & Gastric Phases

Lecture Outline

• Basic GI functions
• Regulation of GI function
• Phases of Digestion
• Absorption
• Protective Function of the GI tract

Phases of Digestion

Intestinal Phase

• The large intestines main processes are
 – Concentrating waste
 • Removal of water
 – Only about .1L of water lost daily through feces
 – Movement & defecation
 • Ileocecal valve controls chyme entrance into colon
 – Relaxes in sequence with intestinal peristalsis as well as when gastric emptying starts (gastrocolic reflex)
 » CCK, serotonin and gastrin are potential initiators of the gastrocolic reflex
 • Defecation reflex
 – Increases abdominal pressure, relaxes anal sphincters
 – Digestion and absorption
 • Digestion mainly through bacterial action which produces
 – Lactate and fatty acids which are absorbable by simple diffusion
 – Bacterial action also produces vitamin K
 – By product of bacterial fermentation is gas (CO₂, methane & HS)
Absorption

- Carbohydrate absorption

Absorption

- Protein absorption

Absorption

- Lipid digestion & absorption

Absorption

- Absorbed nutrients and water are returned via the hepatic portal system
Lecture Outline

- Basic GI functions
- Regulation of GI function
- Phases of Digestion
- Absorption
- Protective Function of the GI tract

Protective Functioning

- Large surface area of GI tract warrants protective function
 - Salivary enzymes and immunoglobulins
 - Gastric acid
 - Toxins and pathogens in the intestine initiate
 - Diarrhea
 - Vomitting
 - GALT & M cells
 - M cells overly the immune cells in the GALT (Peyers patches)
 - M cells activate lymphocytes of GALT when pathogens are detected
 - Activated GALT increase Cl- secretion, fluid secretion and mucous secretion
 » Results in diarrhea & potentially vomiting
 » Both are protective reflexes