Digestive Physiology

Basic GI Functions

- Primary function
 - Movement of nutrient molecules from the external environment to the internal environment
 - Done through the processes of:
 - Motility
 - Secretion
 - Digestion
 - Absorption

Lecture Outline

- Basic GI functions
- Regulation of GI function
- Phases of Digestion
- Absorption
- Protective Function of the GI tract

Basic GI Functions

- Secondary functions
 - Mass balance
 - Ensuring daily fluid input and output are equal
 - Protection
 - GI tract provides a huge external surface for pathogens to gain entrance into the internal environment

Lecture Outline

- Basic GI functions
- Regulation of GI function
- Phases of Digestion
- Absorption
- Protective Function of the GI tract

Regulation of GI Function Long & Short Reflexes

- Long Reflexes
 - Integrated within in the CNS
 - May originate in or outside of the GI tract
 - Feedforward & emotional reflexes are initiated and integrated entirely outside the GI tract
 - » Called cephalic reflexes
- Short Reflexes
 - Integrated in the enteric nervous system
 - Initiated by changes in pH, distension, osmolarity, products of digestion
 - Submucosal plexus contains the sensory neurons
 - · Afferent information to ganglia
 - Efferent information to submucosal and myenteric plexuses for control of secretion, motility and growth

Regulation of GI Function

- What is regulated?
 - All aspects of the GI processes
- Regulated by
 - In general the signals are:
 - Neural
 - Hormonal
 - Paracrine
 - Specifically the controls and systems are:
 - The Long & Short Reflexes
 - · GI peptide reflexes
 - The autonomous function of the enteric nervous system (ENS)

Regulation of GI Function Long & Short Reflexes

Regulation of GI Function

GI Peptide Reflexes

- · Peptides released by the GI tract may act
 - As hormones
 - · Secreted into the blood
 - Act on accessory organs, other parts of the GI tract or the brain
 - As paracrine signals
 - · Secreted into the lumen or extracellular fluid
 - Lumenal signals bind to apical epithelial receptors
 - ECF signals act in the immediate vicinity of secretion
 - Effect
 - · Peptides alter secretion and motility
 - · Alter behavior related to eating

Regulation of GI Function

Enteric Nervous System

- Allows for the autonomous behavior of the digestive system
 - CNS control is not required for digestive functioning
 - Commonalities between ENS and CNS
 - Intrinsic neurons similar to interneurons of CNS
 - Extrinsic neurons composed of autonomic neurons
 - · Neurotransmitters and neuropeptides
 - Nonadrenergic and noncholinergic receptors
 - » Same as adrenergic and cholinergic in CNS
 - Glial support cells similar to astrocytes in CNS
 - Diffusion barrier cells around capillaries in the ganglia are tight, just as the capillaries in the brain, forming the BBB
 - ENS acts as its own integrating center, just as the CNS does

Regulation of GI Function

GI Peptide Reflexes

Copyright © 2009 Pearson Education, Inc.

Lecture Outline

- Basic GI functions
- Regulation of GI function
- Phases of Digestion
- Absorption
- Protective Function of the GI tract

Cephalic Phase

- Starts with the external stimulus of food
 - Response from cerebral cortex, hypothalamus and amygdala is to activate neurons [vagus nerve (X)] in the medulla oblongata which
 - · Sends ANS signals to
 - Salivary glands via branches of facial n. & glossopharyngeal n. (parasympathetic), sympathetic innervation via branches from T1-3
 - » Increases saliva production along with salivary amylase, lysozymes, immunoglobulins and lingual lipase
 - » Starts chemical digestion
 - Enteric nervous system via vagus nerve
 - » Gastric secretions and motility increase in preparation
 - » Accounts for approximately 20% of gastric secretions while eating

Phases of Digestion

- Deglutition reflex (swallowing) moves food to the stomach to start the gastric phase
 - 3.5 liters of content/day enters fundus
 - Controlled by long (vagal reflex) and short (distention & peptides/amino acids) reflexes

Copyright © 2009 Pearson Education, Inc

Phases of Digestion

Cephalic Phase

- What goes on once food is in the mouth?
 - Secretion of saliva
 - Physical digestion via mastication
 - Chemical digestion via salivary amylase and lingual lipase (from Von Ebner's Glands)
 - Preparation for swallowing (deglutition reflex)
 - Bolus pushed against soft palate by tongue to trigger reflex
 - UES (upper esophageal sphincter) relaxes, larynx elevates as epiglottis bends to cover trachea
 - Peristalsis and gravity moves bolus down esophagus to stomach

Phases of Digestion

Gastric Phase

What does the stomach do?

- 1. Stores incoming food
- 2. Digests the food into chyme
 - By action of pepsin and mechanical digestion (churning)
- 3. Protection
 - Acidic gastric environment
 - Mucous provides "self" protection

Gastric Phase

- 1. Stores incoming food
 - Fundus exhibits receptive relaxation
 - controls movement into the duodenum
 - Storage becomes important when more food than is required enters the stomach
 - Too much into the duodenum would spell colonic disaster!

Phases of Digestion Cephalic Phase

Gastric Phase 2. Digests the food into chyme

Phases of Digestion

- - By continuation of salivary amylase until denatured
 - By action of secretions
 - · Parietal cells secrete HCI (gastric acid) and intrinsic factor
 - HCl dissociates into H⁺ and Cl⁻
 - Intrinsic factor required for B₁₂ absorption in the intestine
 - Chief cells secrete pepsinogen & gastric lipase
 - Pepsinogen is converted to pepsin by the action of H+
 - Pepsin is an endopeptidase
 - Mucous neck cells
 - Secretes mucous for protection
 - Secretes bicarbonate for protection
 - · Enterochromaffin-like cells
 - Secretes histamine in response to parasympathetic activity and gastrin and increases parietal cell
 - D cells
 - Secretes somatostatin when pH drops to inhibit further parietal cell secretions
 - - Secrete gastrin to stimulate parietal cells, also relaxes ileocecal sphincter, increases pyloric sphincter activity and lower stomach motility

Phases of Digestion

Gastric Phase

3. Protection

- Acidic gastric environment
- Mucous provides "self" protection

Integration of Cephalic & Gastric Phases

Phases of Digestion

Intestinal Phase

- Hormonal and neural aspects of the intestinal phase
 - entrance of chyme into duodenum gets the enteric nervous system going, secreting:
 - Secretin
 - slows gastric emptying & gastric acid production
 - Stimulates bicarbonate (HCO₃-) production from pancreas to buffer acidic chyme
 - cholecystokinin (CCK)
 - Secreted in response to lipids and slows gastric motility and gastric acid secretion
 - Acts hormonally on the hypothalamus,
 - Incretin hormones (GIP and GLP-1)
 - GIP (gastric inhibitory peptide)
 - GLP-1 (glucagon-like peptide1)
 - » Slow gastric acid and emptying
 - » stimulate insulin release from pancreas

Phases of Digestion

Intestinal Phase

- The final products of the cephalic and gastric phase is
 - Digestion of proteins
 - Formation of chyme
 - Controlled entry of chyme into the intestine
 - Starts the intestinal phase which contains loops that
 - Feed back to further control gastric emptying
 - Feed forward to promote digestion, secretion, motility and absorption of nutrients
 - Signals are hormonal & neural

Phases of Digestion

Intestinal Phase

- Major processes occurring in the intestinal phase
 - Buffering
 - · Via pancreatic exocrine secretion
 - Digestion
 - · By pancreatic exocrine secretion
 - Trypsinogen, chymotrypsinogen, procarboxypeptidase, procolipase and prophospholipase
 - By bile release from gallbladder (stimulated by CCK)
 - Bile emulsifies the lipids, increasing surface area for pancreatic lipases
 - By intestinal mucosal enzymes (brush border enzymes) that are "anchored" to apical surface
 - Peptidases, disaccharidases, enteropeptidase
 - Absorption
 - Most of the water & nutrients are absorbed in the small intestine

Intestinal Phase

 Activation of pancreatic proteolytic enzymes

Copyright © 2009 Pearson Education, Inc.

Phases of Digestion

Integration of Intestinal & Gastric Phases

Copyright © 2009 Pearson Education, Inc.

Phases of Digestion

Intestinal Phase

- · The large intestines main processes are
 - Concentrating waste
 - Removal of water
 - Only about .1L of water lost daily through feces
 - Movement & defecation
 - · Ileocecal valve controls chyme entrance into colon
 - Relaxes in sequence with intestinal peristalsis as well as when gastric emptying starts (gastrocolic reflex)
 - » CCK, serotonin and gastrin are potential initiators of the gastrocolic reflex
 - Defecation reflex
 - Increases abdominal pressure, relaxes anal sphincters
 - Digestion and absorption
 - · Digestion mainly through bacterial action which produces
 - Lactate and fatty acids which are absorbable by simple diffusion
 - Bacterial action also produces vitamin K
 - By product of bacterial fermentation is gas (CO₂, methane & HS)

Lecture Outline

- Basic GI functions
- Regulation of GI function
- Phases of Digestion
- Absorption
- Protective Function of the GI tract

Absorption

 Carbohydrate absorption

Absorption

• Protein absorption

Copyright © 2009 Pearson Education, Inc.

Absorption

• Lipid digestion & absorption

Absorption

 Absorbed nutrients and water are returned via the hepatic portal system

Lecture Outline

- Basic GI functions
- Regulation of GI function
- Phases of Digestion
- Absorption
- Protective Function of the GI tract

Protective Functioning

- Large surface area of GI tract warrants protective function
 - Salivary enzymes and immunoglobulins
 - Gastric acid
 - Toxins and pathogens in the intestine initiate
 - Diarrhea
 - vomitting
 - GALT & M cells
 - M cells overly the immune cells in the GALT (Peyers patches)
 - M cells activate lymphocytes of GALT when pathogens are detected
 - Actiavated GALT increase CI- secretion, fluid secretion and mucous secretion
 - » Results in diarrhea & potentially vomitting
 - » Both are protective reflexes