Agenda

- Membrane potentials what they are
- Formation of membrane potentials
- Types and uses of membrane potentials
- The significance of membrane potentials

Membrane Potentials What They Are

Membrane Potential

Any animal cell's phospholipid bi-layer membrane and associated structures

A difference in electrical charge across (ECF – ICF) this membrane, representing potential energy.

Can also be called a transmembrane potential.

Formation of Membrane Potentials

- Requires a selectively permeable membrane
 - Due to membrane components
- · Force involved is electrochemical
 - "Electro" due to the charges of the ions on either side of the membrane
 - "chemical" due to the number and types of ions on either side of the membrane
 - Main components?
 - Na+ & K+
 - Cl-
 - A⁻ negatively charged anions
 - H+ (proton gradient) specialized use

Formation of Membrane Potential

• Ion Concentrations (millimoles/liter)

Ion	ECF	ICF	E _{ion} at 37° C	Permeability
Na+	150	15	+60mV	.04
K+	5	150	-90mV	1
Ca ²⁺	1	.0001	+122mV	negligible
Cl-	108	10	-63mV	negligible

Formation of Membrane Potential

- The cell membrane is about 40 times less permeable to Na+ than K+, putting the resting potential closer to E_{K+} (which is -90mV)
- The equilibrium potentials of K+, Na+, Cl- and A- result in a membrane potential of -70mV
 - This determined by the Goldman-Hodgkin-Katz equation

$$V_{m} = 61 \log \frac{P_{K+}[K^{+}]o + P_{Na+}[Na^{+}]o}{P_{K+}[K^{+}]i + P_{Na+}[Na^{+}]i}$$

This equation boils down to – the resting membrane potential is calculated by the combined effects of concentration gradients times membrane permeability for each ion, and really just concerning Na and K.

Formation of Membrane Potential

 $E_{Na} = +60 \text{mV}$

Formation of Membrane Potential

$$V_{m} = 61 \log \frac{P_{K+}[K^{+}]_{o} + P_{Na+}[Na^{+}]_{o}}{P_{K+}[K^{+}]_{i} + P_{Na+}[Na^{+}]_{i}}$$

Here's How it Works...

 $E_{\kappa} = -90 \, \text{mV}$

$$V_m = 61 \log \frac{1(5) + .04(150)}{1(150) + .04(15)} = 61 \log \frac{5 + 6}{150 + .6} = 61 \log \frac{11}{150.6}$$

 ${\bf V_m}$ = 61(log of .073) = 61 (-1.37) = -69mV +1mV (for the Na⁺/K⁺ pump effect) = **-70mV**

 P_{K+} = permeability for Potassium = 1 P_{Na+} = permeability for Sodium = .04

 $[K^+]_0$ = concentration of Potassium outside the cell = 5

 $[K^+]_i$ = concentration of Potassium inside the cell = 150

[Na⁺]_o = concentration of Sodium outside the cell = 150

[Na+]_i = concentration of Sodium inside the cell = 15

Maintenance of Membrane Potential

- Without energy, the membrane potential would eventually be destroyed as
 - K+ leaks out the cell due to membrane leakage channels
 - There are just more of the K⁺ leakage channels than Na⁺, giving us the difference in membrane permeability
 - Na+ leaks in due to membrane leakage channels
- Na+/K+ ATPase (Sodium-Potassium Pump) restores the balance pumping Na+ out and K+ back in.

The Significance of Membrane Potentials

- Why do we care?
 - What would happen if membrane potentials didn't exist?
 - What would happen if the membrane potentials were different? (higher or lower)

Types and Uses of Membrane Potentials

- Resting membrane potential
 - Just described at -70mV
- Threshold membrane potential
 - The electrical change that causes specialized channels to cycle through open/close confirmations
 - This occurs in mot excitable tissues at -55mV
- Action potentials
 - This is a change in the membrane potential due to rapid influxes and effluxes of ions (Na+ and K+)
 - Causes adjacent cell membrane to undergo same rapid change
 - Continues on to end of the membrane
 - Used for communication
- Graded potentials
 - Change in membrane potential that is variable based on the rate of and location of stimuli on the membrane
 - Used for integration