CARPIOYASCULAR PHYSIOLOGY

Lecture Outline

- General Functions
- Components
- Production & Function of Formed Elements
- RBC specialized functionality
 - Anemia
- Hemostasis
 - Platelets & Coagulation

Components

· Whole blood is divided into

Production & Function of Blood Cells

- Production of blood cells is called hematopoiesis
 - Is initiated by week three of embryonic development
 - Rate is influenced by cytokines
 - EPO (erythropoietin)
 - Produced in the kidney
 - Targets bone marrow & increases production of erythrocytes
 - TPO (thrombopoietin)
 - Produced in the liver
 - Targets bone marrow & increases production of megakaryocytes
 - CSFs, IL's, SCF (stem cell factor)
 - Produced by the endothelium and fibroblasts of bone marrow and by leukocytes
 - targets all blood cell types & increases activity of hematopoietic stem cells

Hematopoiesis in humans Adjunction for institution of the control of the control

Production & Function of Blood Cells

- All blood cells differentiate from a pluripotent stem cell
 - The Hematopoietic stem cell is
 - Pluripotent because it is already partially differentiated... won't produce anything else but blood cell types
 - This process occurs in bone marrow
 - Mainly in the epiphyses (ends) of long bones and in the flat bones (sternum, ribs, ilium)

Production & Function of Blood Cells

Production & Function of Blood Cells

- Red Blood Cell Production
 - Low O₂ levels initiate synthesis of hypoxia-inducible factor-1 (HIF-1)
 - HIF-1 turns on EPO gene and synthesis of EPO is on!
 - Turns off as hypoxia is corrected due to the increase in O₂ carrying RBCs.
 - Today EPO is produced by recombinant DNA technology and other CSFs for WBCs
 - · Benefits?
 - Cancer patients and
 - athletes! (illegally)

Production & Function of Blood Cells

- Colony-Stimulating Factors (CSFs)
 - Regulate wbc production and development = leukopoiesis
 - Rate must be able to be quickly amped up as a mature leukocyte no longer undergoes mitosis
 - Any additional wbcs must come from stem cell activity
 - Production of a specific type is controllable by the mature population of its type
 - This ensures the correct leukocyte production for the demand

Production & Function of Blood Cells

Blood Cell Levels

RBC Specialized Function

- Red Blood Cells
 - Specialized aspects:
 - · Biconcave shape
 - Approx 7um in diamete
 - Due to cytoskeletal struct
 - Aids in movement through maintain integrity even
 - » Swelling vs. crenat
- ter ructure ough capillaries and allows them to n as osmotic pressures vary ation (shrinking)
 - · Anucleate condition in mature rbcs
 - Implications?
 - Life span?

RBC Specialized Function

- Red Blood Cells
 - Specialized aspects:
 - The last stage (immature form) of the production process is called a reticulocyte
 - Significant as a little bit of ER remains and is visible upon microscopic evaluation
 - » The ratio of reticulocytes to erythrocytes is used to monitor production rates
 - Production and transport of hemoglobin (Hb) which accounts for 97% of the content of a mature rbc!
 - This comes to approximately 280 million hemoglobin molecules/cell!
 - Each Hb molecule carries 4 oxygen molecules
 - Increases the O₂ carrying capacity of blood by about 70 times!

RBC Specialized Function

- Red Blood Cells
 - Hemoglobin (Hb) production & iron conservation

RBC Specialized Function

- Red Blood Cells
 - Hemoglobin (Hb)
 - A quaternary protein (2 alpha & 2 beta units)
 - Hb exhibits plasticity in its shape
 - When O₂ binding sites are fully loaded it is in its "tense" configuration
 - » Holds onto O₂ with more tenacity
 - » Where does this happen?
 - When ${\rm O}_2$ binding sites are less than fully loaded it enters a "relaxed" configuration
 - » Makes binding and releasing O₂ easier
 - » Where does this happen?

RBC Specialized Function

Anemia

- Reduction in O2 carrying capacity in blood because of low Hb content.
- RBC damage and loss from
 - Blood loss
 - Hemolytic anemia cells bursting, may be
 - Hereditary such as
 - Sickle cell anemia
 - Spherocytosis
 - Aquired
 - Parasitic issue malaria, dengue fever
 - Drugs
 - autoimmune issues
- Reduced capacity for RBC production
 - Aplastic anemia cells don't form correctly
 - Loss/lack of iron (needed for Hb synthesis)
 - Deficiency in folic acid (needed for DNA production)
 - Deficiency of Vit B₁₂ (needed for DNA production)
 - May be a result of lack of intrinsic factor needed for B₁₂ absorption
 - Low EPO production

RBC Specialized Function

Polycythemia

- Too many RBCs (and WBCs too)
 - May be due to stem cell dysfunction
 - May be relative polycythemia
 - The hematocrit is high but volume is normal
 - Dehydration reduces plasma volume and therefore increases relative cell count.
 - Why is polycythemia bad?

Hemostasis

Platelet Plug Formation

- Platelets stick to damaged vessel
 - Release cytokines which initiate further vasoconstriction and additional platelet adhesion
 - Sets up a cascading effect
 - Leads to a loose plug being formed
- The damaged vessel at the same time with collagen exposed and tissue factor released starts the coagulation cascade

Hemostasis

- Preventing blood loss occurs in a few steps
 - 1. Vasoconstriction
 - Reduces blood flow and pressure in damaged vessel
 - Damage releases paracrines that cause immediate constriction of smooth muscle
 - 2. Platelet Plug Formation
 - The process of forming a physical plug to stop blood loss
 - 3. Clot formation (coagulation cascade)
 - Forms a clot (fibrin polymer)

TABLE 16-4	Factors Involved in	Platelet Function		
CHEMICAL FACTOR	SOURCE	ACTIVATED BY OR RELEASED IN RESPONSE TO	ROLE IN PLATELET PLUG FORMATION	OTHER ROLES AND COMMENTS
Collagen	Subendothelial ex- tracellular matrix	Injury exposes plate- lets to collagen	Binds platelets to begin platelet plug	N/A
von Willebrand factor (vWF)	Endothelium, mega- karyocytes	Exposure to collagen	Links platelets to collagen	Deficiency or defect causes prolonged bleeding
Serotonin	Secretory vesicles of platelets	Platelet activation	Platelet aggregation	Vasoconstrictor
Adenosine diphosphate (ADP)	Platelet mito- chondria	Platelet activation, thrombin	Platelet aggregation	N/A
Platelet-activating factor (PAF)	Platelets, neutro- phils, monocytes	Platelet activation	Platelet aggregation	Plays role in inflamma- tion; increases capillary permeability
Thromboxane A ₂	Phospholipids in platelet membranes	Platelet-activating factor	Platelet aggregation	Vasoconstrictor; eicosa- noid
Platelet-derived growth factor (PDGF)	Platelets	Platelet activation	N/A	Promotes wound healing by attracting fibroblasts and smooth muscle cells

Copyright © 2009 Pearson Education, Inc.

Hemostasis

Coagulation Cascade

- This coagulation forms a more permanent clot!
- Two pathways to achieve this
 - Intrinsic Pathway
 - Exposed collagen activates the initiating factor of the cascade event = factor XII
 - Extrinsic Pathway
 - Damaged tissues release tissue factor (factor III or tissue thromboplastin)

Table of Factors involved with the coagulation cascade

Number and/or name	Function		
I = fibrinogen	Forms clot (fibrin)		
II = prothrombin	Its active form (IIa) activates I, V, VII, VIII, XI, XIII, protein C, platelets		
III* = Tissue factor	Co-factor of VIIa (formerly known as factor III)		
IV* = Calcium	Required for coagulation factors to bind to phospholipid (formerly known as factor IV)		
V = proaccelerin, labile factor	Co-factor of X with which it forms the prothrombinase complex		
VI	Unassigned – old name of Factor Va		
VII = stable factor	Name: Pro Convertin - Activates IX, X		
VIII = Anti Hemophilic factor A	Co-factor of IX with which it forms the tenase complex		
IX = Anti Hemophilic Factor B or Christmas factor	Activates X: forms tenase complex with factor VIII		
X = Stuart-Prower factor	Activates II: forms prothrombinase complex with factor V		
XI = plasma thromboplastin antecedent	Activates IX		
XII = Hageman factor	Activates factor XI and prekallikrein		
XIII = fibrin-stabilizing factor	Crosslinks fibrin		

Hemostasis

Coagulation Cascade

Table of other factors involved with hemostasis

prekallikrein	Activates XII and prekallikrein; cleaves HMWK	
high-molecular-weight kininogen	Supports reciprocal activation of XII, XI, and prekallikrein	
fibronectin	Mediates cell adhesion	
antithrombin III	Inhibits IIa, Xa, and other proteases;	
heparin cofactor II	Inhibits IIa, cofactor for heparin and dermatan sulfate	
protein C	Inactivates Va and VIIIa	
protein S	Cofactor for activated protein C	
protein Z	Mediates thrombin adhesion to phospholipids and stimulates degradation of factor X by ZPI	
Protein Z-related protease inhibitor	Degrades factors X (in presence of protein Z) and XI	
plasminogen	Converts to plasmin, lyses fibrin and other proteins	
alpha 2-antiplasmin	Inhibits plasmin	
tissue plasminogen activator (tPA)	Activates plasminogen	
urokinase	Activates plasminogen	
plasminogen activator inhibitor-1	Inactivates tPA & urokinase (endothelial PAI)	
plasminogen activator inhibitor-2	Inactivates tPA & urokinase (placental PAI)	
cancer procoagulant	Pathological factor X activator linked to thrombosis in cancer	

Summary

- Blood as a transport, regulative, hydraulic and protective medium
- Production of RBCs involves a recycling aspect (Fe conservation)
- Hemostasis involves
 - Vascular spasm
 - Platelet plug formation
 - Coagulation
 - Functionally a postive feedback system