Cardiovascular Physiology

Part 2
Cardiac Output & Control Systems

Lecture Outline

• Review Integrated Cardiac Page
• Cardiac Output & Controls
• Blood Flow & Blood Pressure Controls
• Medullary Center for Cardiovascular Control & the Baroreceptor Reflex
Cardiovascular Physiology
Cardiac Output

- Cardiac Output (CO) is the volume pumped by the left ventricle each minute
 - influenced by
 - Stroke Volume (SV)
 - EDV – ESV = SV
 - 135ml – 65ml = 70ml
 - Heart Rate (HR) bpm
 - 80 bpm
 - CO = SV x HR
 - 70ml/bpm x 72bpm = 5040 ml/min
 - 5.04L/min
- How is this controlled to account for changing conditions? (exercise, disease, stress…)
 - What influences SV?
 - What influences HR?

Cardiovascular Physiology
Cardiac Output

- Influencing stroke volume
 - Pre Load
 - operates under Frank-Starling Law of the Heart
 - What then influences the stretch applied to cardiac muscle tissue prior to contraction?
 - Venous return, driven by
 - Skeletal muscle pump
 - Respiratory pump
 - Atrial Suction
 - Contractility
 - Stronger contraction = larger stroke volume
 - Due to inotropic agents
 - Epinephrine, Norepinephrine, Digitalis* are (+) inotropic agents
 - ACh is a (-) inotropic agent
 - How do they work?

*digitalis – a cardiac glycoside (drug) that lowers Na⁺/K⁺ ATPase activity and therefore the NCX transporter activity, resulting in elevated ICF Ca²⁺ which creates a stronger graded contraction.
Cardiovascular Physiology

Cardiac Output

- **Inotropic Agents**

 - Influencing stroke volume
 - **Afterload**
 - This is the amount of pressure that is sitting on the semilunar valves that must be overcome before ventricular ejection can occur.
 - The more pressure that must be built up during isovolumetric ventricular contraction reduces the time that ejection can occur:
 - Reduces the ejection fraction (SV/EDV)
 - Normal 70ml/135ml = 52%
 - Elevated aortic pressure causes the reduction from normal
 - 60ml/135ml = 44%
 - **indirect relationship**
 - Higher aortic pressure = lower stroke volume
 - **Causes?**
 - Elevated blood pressure
 - Loss of compliance in aorta (loss of elasticity)

- **Influencing Heart Rate**
 - Rate is set by pacemaker cells rate of depolarization
 - **Chronotropic effects may be excitatory**
 - Sympathetic activity
 - **Or inhibitory**
 - Parasympathetic activity
Lecture Outline

- Review Integrated Cardiac Page
- Cardiac Output & Controls
- **Blood Flow & Blood Pressure Controls**
- Medullary Center for Cardiovascular Control & the Baroreceptor Reflex

Cardiac Physiology

Blood Flow & Blood Pressure Controls

- CO tells us how much blood is ejected per minute and is influence by both intrinsic & extrinsic factors
- Extrinsic factors (besides ANS) include
 - blood vessels & blood pressure
 - blood volume & viscosity
 - capillary exchange & the lymphatic return
 - cardiovascular disease

Cardiac Physiology

Blood Flow & Blood Pressure Controls

- Blood Vessels Function to
 - Provide route (arteries – away, veins – visit)
 - Allow for exchange (capillaries)
 - Control & regulate blood pressure

Cardiac Physiology

Blood Flow & Blood Pressure Controls

[Diagram of blood circulation and cardiovascular system]
Cardiac Physiology
Blood Flow & Blood Pressure Controls

- Blood Vessel Structure enables specific functions
 - Aorta
 - absorb pulse pressure (systolic pressure – diastolic pressure) and release energy creating diastolic pulse
 - Large arteries
 - conduct and distribute blood to regional areas
 - Arterioles
 - Regulate flow to tissues and regulate MAP (mean arterial pressure)

Blood Vessels & Blood Pressure

- **Systolic Pressure**
 - The pressure that is created when the ventricles contract
 - Usually around 120 mm Hg

- **Diastolic Pressure**
 - The pressure that is created by the recoil of the aorta AND the closure of the aortic semilunar valve
 - Usually around 80 mm Hg
Cardiac Physiology
Blood Flow & Blood Pressure Controls

• Blood Vessels & Blood Pressure
 – Pulse Pressure
 • The difference between the systolic and diastolic pressures
 – Usually 40 mm Hg (120 mm Hg – 80 mm Hg)
 • Only applies to arteries
 – Why do we care about systolic, diastolic and pulse pressures?
 • We can determine the average pressure within the arterial system = Mean Arterial Pressure (MAP)
 MAP = diastolic Pressure + 1/3 Pulse Pressure
 MAP = 80 mm Hg + 1/3(120 mm Hg – 80 mm Hg)
 MAP = 93 mm Hg
 • Then we can determine general health of the cardiovascular system

Cardiac Physiology
Blood Flow & Blood Pressure Controls

• MAP is proportionate to the cardiac output and the amount of peripheral resistance
 – The opposition to blood flow in the arterioles
 • Resistance is directly proportional to the length (L) of the vessel, and the viscosity(η) (thickness) of the blood and inversely proportional (to the 4th power) of the vessel radius, so….
 \[R \propto L \frac{\eta}{r^4} \]
 However as the L and η should remain relatively constant, we can determine that peripheral resistance is mainly a factor of the vessel diameter
 \[R \propto \frac{1}{r^4} \]

Cardiac Physiology
Blood Flow & Blood Pressure Controls

• MAP is proportionate to the cardiac output and the amount of peripheral resistance
 – If CO increases but resistance to the outflow does not change
 • Then more blood is flowing into the system than out and arterial pressure must go up to allow inflows to equal outflows

Cardiac Physiology
Blood Flow & Blood Pressure Controls

• So… if resistance is affected by the radius, and flow is inversely proportionate to the resistance
 – What effect will vasoconstriction / vasodilation have on blood pressure and blood flow? And what controls it?
 – What will obesity do to blood pressure and blood flow & why?
Cardiac Physiology
Blood Flow & Blood Pressure Controls

• The controls of vessel diameter are both local and systemic
 – Enables tissues to control their own blood flow
 – Local controlling mechanisms include
 • Myogenic response by smooth muscle of arterioles
 – Increased stretch due to increasing blood pressure causes vessel constriction due to mechanically gated Ca\(^{2+}\) channel activation
 • Paracrines – local substances which alter smooth muscle activity
 – Serotonin
 » Secreted by activated platelets
 – Endothelin
 » Secreted by vascular endothelium
 – NO secreted by vascular endothelium
 – Bradykinin – from various sources
 – Histamine – from mast cells in connective tissues
 – Adenosine secreted by cells in low O\(_2\) (hypoxic) conditions
 – ↓O\(_2\), ↑CO\(_2\), ↑K\(^+\), ↑H\(^+\), ↑temp
 – Systemic controlling mechanisms for vasoconstriction include
 • NE – sympathetic postganglionic neurons
 • Serotonin – neurons
 • Vasopressin (ADH) – posterior pituitary
 • Angiotensin II – part of renin-angiotensin pathway
 – Systemic controls for vasodilation include
 • Beta-2 epinephrine – from adrenal medulla
 • ACH – parasympathetic postganglionic neurons
 • ANP (atrial natriuretic peptide) – from atrial myocardium and brain
 • VIPs (vasoactive intestinal peptides) – from neurons

Cardiac Physiology
Blood Flow & Blood Pressure Controls

• Hyperemia is locally mediated increases in blood flow, may be
 – Active or Reactive

Cardiac Physiology
Blood Flow & Blood Pressure Controls

Effect of Sympathetic Stimulation on Blood Vessels
Cardiovascular Physiology
Review of Factors Influencing Blood Flow

1. sympathetic & parasympathetic innervation
2. sympathetic innervation and epinephrine
3. myogenic response
4. paracrine

Lecture Outline
- Review Integrated Cardiac Page
- Cardiac Output & Controls
- Blood Flow & Blood Pressure Controls
- Medullary Center for Cardiovascular Control & the Baroreceptor Reflex

Cardiac Physiology
Neural Regulation of Blood Pressure
- CNS contains the Medullary Cardiovascular Control Center
 - Receives inputs from carotid and aortic baroreceptors
 - Creates outflow to sympathetic and parasympathetic pathways
 - Sympathetic to SA & AV nodes and myocardium as well as to arterioles and veins
 - Parasympathetic to the SA Node
 - Baroreceptors initiate the baroreceptor reflex
Next Time

• Capillary Exchange
• Blood