Part 2
Cardiac Output & Control Systems

Lecture Outline

- Review Integrated Cardiac Page
- · Cardiac Output & Controls
- Blood Flow & Blood Pressure Controls
- Medullary Center for Cardiovascular Control & the Baroreceptor Reflex

Cardiovascular Physiology Integrated Review

Heart Animation

Lecture Outline

- Review Integrated Cardiac Page
- Cardiac Output & Controls
- Blood Flow & Blood Pressure Controls
- Medullary Center for Cardiovascular Control & the Baroreceptor Reflex

Cardiac Output

ESV-

65

- influenced by

Stroke Volume (SV)
 EDV – ESV = SV
 135ml – 65ml = 70ml

Heart Rate (HR) bpm
 80 bmp

 $-CO = SV \times HR$

70ml/b x 72bpm = 5040 ml/min =5.04L/min

- · What influences SV?
- · What influences HR?

Cardiovascular Physiology

Cardiac Output

- Influencing stroke volume
 - Pre Load
 - operates under Frank-Starling Law of the Heart
 - What then influences the stretch applied to cardiac muscle tissue prior to contraction?
 - Venous return, driven by
 - » Skeletal muscle pump
 - » Respiratory pump
 - » Atrial Suction

Cardiovascular Physiology

Cardiac Output

- Influencing stroke volume
 - Pre Load
 - The amount of stretch within the contractile myocardial fibers
 - Represents the "load" placed on the muscle fibers before they contract
 - They respond according to length-tension patterns observed in muscle tissue by Frank, then by Starling

 They respond 0 100 135 200 300 400 according to length-tension patterns observed in muscle tissue by Frank, then by Starling

- Became known as the Frank-Starling Law of the Heart
- "The heart will pump all the blood that is returned to it"

Cardiovascular Physiology

Cardiac Output

- · Influencing stroke volume
 - Contractility
 - Stronger contraction = larger stroke volume
 - Due to inotropic agents
 - Epinephrine, Norepinephrine, Digitalis* are (+) inotropic agents
 - ACh is a (-) inotropic agent
 - How do they work?

^{*}digitalis – a cardiac glycoside (drug) that lowers Na⁺/K⁺ ATPase activity and therefore the NCX transporter activity, resulting in elevated ICF Ca²⁺ which creates a stronger graded contraction.

Cardiovascular Physiology

Cardiac Output

- Influencing Heart Rate
 - Rate is set by pacemaker cells rate of depolarization
 - Chronotropic effects may be excitatory
 - Sympathetic activity
 - Or inhibitory
 - Parasympathetic activity

Cardiovascular Physiology

Cardiac Output

- · Influencing stroke volume
 - Afterload
 - This is the amount of pressure that is sitting on the semilunar valves that must be overcome before ventricular ejection can occur
 - The more pressure that must be built up during Isovolumetric ventricular contraction reduces the time that ejection can occur
 - Reduces the ejection fraction (SV/EDV)
 - » Normal 70ml/135ml = 52%
 - » Elevated aortic pressure causes the reduction from normal
 - » 60ml/135ml = 44%
 - · indirect relationship
 - Higher aortic pressure = lower stroke volume
 - · Causes?
 - Elevated blood pressure
 - Loss of compliance in aorta (loss of elasticity)

Cardiovascular Physiology

Cardiac Output Overview of Influences

Lecture Outline

- Review Integrated Cardiac Page
- Cardiac Output & Controls
- Blood Flow & Blood Pressure Controls
- Medullary Center for Cardiovascular Control & the Baroreceptor Reflex

Cardiac Physiology

Blood Flow & Blood Pressure Controls

- Blood Vessels Function to
 - Provide route (arteries away, veins visit)
 - Allow for exchange (capillaries)
 - Control & regulate blood pressure

Cardiac Physiology

Blood Flow & Blood Pressure Controls

- CO tells us how much blood is ejected per minute and is influence by both intrinsic & extrinsic factors
- Extrinsic factors (besides ANS) include
 - blood vessels & blood pressure
 - blood volume & viscosity
 - capillary exchange & the lymphatic return
 - cardiovascular disease

Cardiac Physiology

Blood Flow & Blood Pressure Controls

Cardiac Physiology

Blood Flow & Blood Pressure Controls

- Blood Vessel Structure enables specific functions
 - Aorta
 - absorb pulse pressure (systolic pressure – diastolic pressure) and release energy creating diastolic pulse
 - Large arteries
 - conduct and distribute blood to regional areas
 - Arterioles
 - Regulate flow to tissues and regulate MAP (mean arterial pressure)

Cardiac Physiology

Blood Flow & Blood Pressure Controls

- Capillaries
 - Allow for exchange
- Venules
 - Collect and direct blood to the veins
- Veins
 - Return blood to heart and act as a blood reservoir

Cardiac Physiology

Blood Flow & Blood Pressure Controls

- Blood Vessels & Blood Pressure
 - Systolic Pressure
 - The pressure that is created when the ventricles contract

Cardiac Physiology

Blood Flow & Blood Pressure Controls

- Blood Vessels & Blood Pressure
 - Diastolic Pressure
 - The pressure that is created by the recoil of the aorta AND the closure of the aortic semilunar valve
 - Usually around 80 mm Hg

Cardiac Physiology

Blood Flow & Blood Pressure Controls

- Blood Vessels & Blood Pressure
 - Pulse Pressure
 - The difference between the systolic and diastolic pressures
 Usually 40 mm Hg (120 mm Hg 80 mm Hg)
 - Only applies to arteries
 - Why do we care about systolic, diastolic and pulse pressures?
 - We can determine the average pressure within the arterial system = Mean Arterial Pressure (MAP)

MAP = diastolic Pressure + 1/3 Pulse Pressure MAP = 80 mm Hg + 1/3(120 mm Hg - 80 mm Hg)

MAP = 93 mm Hg

Then we can determine general health of the cardiovascular system

Cardiac Physiology

Blood Flow & Blood Pressure Controls

- MAP is proportionate to the cardiac output and the amount of peripheral resistance
 - The opposition to blood flow in the arterioles
 - Resistance is directly proportional to the length (L) of the vessel, and the viscosity(η) (thickness) of the blood and inversely proportional (to the 4th power) of the vessel radius, so....

$$R \propto L \eta/r^4$$

However as the L and η should remain relatively constant, we can determine that peripheral resistance is mainly a factor of the vessel diameter

$$R \propto 1/r^4$$

Cardiac Physiology

Blood Flow & Blood Pressure Controls

- MAP is proportionate to the cardiac output and the amount of peripheral resistance
 - If CO increases but resistance to the outflow does not change
 - Then more blood is flowing into the system than out and arterial pressure must go up to allow inflows to equal outflows

Cardiac Physiology

Blood Flow & Blood Pressure Controls

- So... if resistance is affected by the radius, and flow is inversely proportionate to the resistance
 - What effect will
 vasoconstriction /
 vasodilation have on
 blood pressure and
 blood flow? And what
 controls it?
 - What will obesity do to blood pressure and blood flow & why?

Cardiac Physiology

Blood Flow & Blood Pressure Controls

- The controls of vessel diameter are both local and systemic
 - Enables tissues to control their own blood flow
 - Local controlling mechanisms include
 - · Myogenic response by smooth muscle of arterioles
 - Increased stretch due to increasing blood pressure causes vessel constriction due to mechanically gated Ca²⁺ channel activation
 - Paracrines local substances which alter smooth muscle activity
 Serotonin

vasoconstrictors <

» Secreted by activated platelets

Endothelin

» secreted by vascular endothelium

vasodilators

NO secreted by vascular endotheliumBradykinin – from various sources

Histamine – from mast cells in connective tissues

- Adenosine secreted by cells in low O₂ (hypoxic) conditions

 $-\downarrow O_2$, $\uparrow CO_2$, $\uparrow K^+$, $\uparrow H^+$, $\uparrow temp$

Cardiac Physiology

Blood Flow & Blood Pressure Controls

- The controls of vessel diameter are both local (intrinsic) and systemic (extrinsic)
 - Systemic controlling mechanisms for vasoconstriction include
 - NE sympathetic postganglionic neurons
 - · Serotonin neurons
 - Vasopressin (ADH) posterior pituitary
 - · Angiotensin II part of renin-antiogensin pathway
 - Systemic controls for vasodilation include
 - · Beta-2 epinephrine from adrenal medulla
 - ACH parasympathetic postganglionic neurons
 - · ANP (atrial natriuretic peptide) from atrial myocaridum and brain
 - · VIPs (vasoactive intestinal peptides) from neurons

Cardiac Physiology

Blood Flow & Blood Pressure Controls

 Hyperemia is locally mediated increases in blood flow, may be

Cardiac Physiology

As the signal rate increases

Blood Flow & Blood Pressure Controls

Effect of Sympathetic Stimulation on Blood Vessels

| Sympathetic signals from neuron | Sympathetic neuron | Norepinephrine release onto a receptor | Norepinephrine release on

As the signal rate decreases the blood vessel dialates.

Review of Factors Influencing Blood Flow

Lecture Outline

- Review Integrated Cardiac Page
- Cardiac Output & Controls
- Blood Flow & Blood Pressure Controls
- Medullary Center for Cardiovascular Control & the Baroreceptor Reflex

Cardiac Physiology

Neural Regulation of Blood Pressure

- CNS contains the Medullary Cardiovascular Control Center
 - Receives inputs from carotid and aortic baroreceptors
 - Creates outflow to sympathetic and parasympathetic pathways
 - Sympathetic to SA & AV nodes and myocardium as well as to arterioles and veins
 - · Parasympathetic to the SA Node
 - Baroreceptors initiate the baroreceptor reflex

The Baroreceptor Reflex Pathways

Next Time

- Capillary Exchange
- Blood