Cardiovascular Physiology

Lecture Outline

• Cardiovascular System Function
• Functional Anatomy of the Heart
• Myocardial Physiology
• Cardiac Cycle
• Cardiac Output Controls & Blood Pressure

Cardiovascular System Function

• Functional components of the cardiovascular system:
 – Heart
 – Blood Vessels
 – Blood
• General functions these provide
 – Transportation
 • Everything transported by the blood
 – Regulation
 • Of the cardiovascular system
 – Intrinsic v extrinsic
 – Protection
 • Against blood loss
 – Production/Synthesis

Functional Anatomy of the Heart

• To create the “pump” we have to examine
 – Cardiac muscle
 – Chambers
 – Valves
 – Intrinsic Conduction System
Lecture Outline

• Cardiovascular System Function
• **Functional Anatomy of the Heart**
• Myocardial Physiology
• Cardiac Cycle
• Cardiac Output Controls & Blood Pressure

Functional Anatomy of the Heart

Cardiac Muscle

• Characteristics
 – Striated
 – Short branched cells
 – Uninucleate
 – Intercalated discs
 – T-tubules larger and over z-discs

Chambers

• 4 chambers
 – 2 Atria
 – 2 Ventricles

• 2 systems
 – Pulmonary
 – Systemic

Valves

• Function is to prevent backflow
 – Atrioventricular Valves
 • Prevent backflow to the atria
 • Prolapse is prevented by the chordae
 – Tensioned by the papillary muscles
 – Semilunar Valves
 • Prevent backflow into ventricles
Functional Anatomy of the Heart
Intrinsic Conduction System

• Consists of “pacemaker” cells and conduction pathways
 – Coordinate the contraction of the atria and ventricles

Myocardial Physiology
Autorhythmic Cells (Pacemaker Cells)

• Characteristics of Pacemaker Cells
 – Smaller than contractile cells
 – Don't contain many myofibrils
 – No organized sarcomere structure
 • do not contribute to the contractile force of the heart

Lecture Outline

• Cardiovascular System Function
• Functional Anatomy of the Heart
• **Myocardial Physiology**
 – Autorhythmic Cells (Pacemaker cells)
 – Contractile cells
• Cardiac Cycle
• Cardiac Output Controls & Blood Pressure

Myocardial Physiology
Autorhythmic Cells (Pacemaker Cells)

• Characteristics of Pacemaker Cells
 – Unstable membrane potential
 • “bottoms out” at -60mV
 • “drifts upward” to -40mV, forming a pacemaker potential
 – Myogenic
 • The upward “drift” allows the membrane to reach threshold potential (-40mV) by itself
 • This is due to
 1. Slow leakage of K⁺ out & faster leakage Na⁺ in
 » Causes slow depolarization
 » Occurs through Iₚ channels (funny) that open at negative membrane potentials and start closing as membrane approaches threshold potential
 2. Ca²⁺ channels opening as membrane approaches threshold
 » At threshold additional Ca²⁺ ion channels open causing more rapid depolarization
 » These deactivate shortly after and
 3. Slow K⁺ channels open as membrane depolarizes causing an efflux of K⁺ and a repolarization of membrane
Myocardial Physiology
Autorhythmic Cells (Pacemaker Cells)

- Characteristics of Pacemaker Cells
 - Altering Activity of Pacemaker Cells
 - Sympathetic activity
 - NE and E increase \(I_f \) channel activity
 - Binds to \(\beta _1 \) adrenergic receptors which activate cAMP and increase \(I_f \) channel open time
 - Causes more rapid pacemaker potential and faster rate of action potentials
 - Sympathetic Activity Summary:
 - Increased chronotropic effects
 \[\uparrow \] heart rate
 - Increased dromotropic effects
 \[\uparrow \] conduction of APs
 - Increased inotropic effects
 \[\uparrow \] contractility
 - Parasympathetic activity
 - ACh binds to muscarinic receptors
 - Increases \(K^+ \) permeability and decreases \(Ca^{2+} \) permeability = hyperpolarizing the membrane
 - Longer time to threshold = slower rate of action potentials
 - Parasympathetic Activity Summary:
 - Decreased chronotropic effects
 \[\downarrow \] heart rate
 - Decreased dromotropic effects
 \[\downarrow \] conduction of APs
 - Decreased inotropic effects
 \[\downarrow \] contractility

Myocardial Physiology
Autorhythmic Cells (Pacemaker Cells)

- Altering Activity of Pacemaker Cells
 - Special aspects
 - Intercalated discs
 - Highly convoluted and interdigitated junctions
 - Joint adjacent cells with Desmosomes & fascia adherens
 - Allow for synticial activity
 - With gap junctions
 - More mitochondria than skeletal muscle
 - Less sarcoplasmic reticulum
 - \(Ca^{2+} \) also influxes from ECF reducing storage need
 - Larger t-tubules
 - Internally branching
 - Myocardial contractions are graded!
Myocardial Physiology
Contractile Cells

• Special aspects
 – The action potential of a contractile cell
 • Ca²⁺ plays a major role again
 • Action potential is longer in duration than a “normal” action potential due to Ca²⁺ entry
 – Phases
 4 – resting membrane potential @ -90mV
 0 – depolarization
 » Due to gap junctions or conduction fiber action
 » Voltage gated Na⁺ channels open… close at 20mV
 1 – temporary repolarization
 » Open K⁺ channels allow some K⁺ to leave the cell
 2 – plateau phase
 » Voltage gated Ca²⁺ channels are fully open (started during initial depolarization)
 3 – repolarization
 » Ca²⁺ channels close and K⁺ permeability increases as slower activated K⁺ channels open, causing a quick repolarization
 – What is the significance of the plateau phase?

Myocardial Physiology
Contractile Cells

• Plateau phase prevents summation due to the elongated refractory period
• No summation capacity = no tetanus
 – Which would be fatal

Myocardial Physiology
Contractile Cells

• Skeletal Action Potential vs Contractile Myocardial Action Potential

Summary of Action Potentials
Skeletal Muscle vs Cardiac Muscle

<table>
<thead>
<tr>
<th>TABLE 14-3</th>
<th>Comparison of Action Potentials in Cardiac and Skeletal Muscle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SKELETAL MUSCLE</td>
</tr>
<tr>
<td>Membrane potential</td>
<td>Stable at ~70 mV</td>
</tr>
<tr>
<td>Events leading to threshold potential</td>
<td>Net K⁺ entry through ACCH-operated channels</td>
</tr>
<tr>
<td>Refractory phase</td>
<td>Na⁺ entry</td>
</tr>
<tr>
<td>Repolarization phase:</td>
<td>Rapid, caused by K⁺ influx</td>
</tr>
<tr>
<td>Hyperpolarization</td>
<td>Due to excessive K⁺ efflux at high K⁺ permeability when K⁺ channels close; leak of K⁺ and Na⁺ restores potential to resting state</td>
</tr>
<tr>
<td>Duration of action potential</td>
<td>Short; 1-2 msec</td>
</tr>
<tr>
<td>Refractory period</td>
<td>Generally brief</td>
</tr>
</tbody>
</table>

Copyright © 2009 Pearson Education, Inc.
Myocardial Physiology
Contractile Cells

• Initiation
 – Action potential via pacemaker cells to conduction fibers

• Excitation-Contraction Coupling
 1. Starts with CICR (Ca\(^{2+}\) induced Ca\(^{2+}\) release)
 • AP spreads along sarcolemma
 • T-tubules contain voltage gated L-type Ca\(^{2+}\) channels which open upon depolarization
 • Ca\(^{2+}\) entrance into myocardial cell and opens RyR (ryanodine receptors) Ca\(^{2+}\) release channels
 • Release of Ca\(^{2+}\) from SR causes a Ca\(^{2+}\) “spark”
 • Multiple sparks form a Ca\(^{2+}\) signal

 2. Ca\(^{2+}\) signal (Ca\(^{2+}\) from SR and ECF) binds to troponin to initiate myosin head attachment to actin

• Contraction
 – Same as skeletal muscle, but…
 – Strength of contraction varies
 • Sarcomeres are not “all or none” as it is in skeletal muscle
 » The response is graded!
 » Low levels of cytosolic Ca\(^{2+}\) will not activate as many myosin/actin interactions and the opposite is true
 • Length tension relationships exist
 – Strongest contraction generated when stretched between 80 & 100% of maximum (physiological range)
 – What causes stretching?
 » The filling of chambers with blood

• Relaxation
 – Ca\(^{2+}\) is transported back into the SR and
 – Ca\(^{2+}\) is transported out of the cell by a facilitated Na\(^{+}\)/Ca\(^{2+}\) exchanger (NCX)
 – As ICF Ca\(^{2+}\) levels drop, interactions between myosin/actin are stopped
 – Sarcomere lengthens

Lecture Outline

• Cardiovascular System Function
• Functional Anatomy of the Heart
• Myocardial Physiology
 – Autorhythmic Cells (Pacemaker cells)
 – Contractile cells
• Cardiac Cycle
• Cardiac Output Controls & Blood Pressure
Cardiac Cycle
Coordinating the activity

• Cardiac cycle is the sequence of events as blood enters the atria, leaves the ventricles and then starts over
• Synchronizing this is the Intrinsic Electrical Conduction System
• Influencing the rate (chronotropy & dromotropy) is done by the sympathetic and parasympathetic divisions of the ANS

Cardiac Cycle
Coordinating the activity

• Electrical Conduction Pathway
 – Initiated by the Sino-Atrial node (SA node) which is myogenic at 70-80 action potentials/minute
 – Depolarization is spread through the atria via gap junctions and internodal pathways to the Atrio-Ventricular node (AV node)
 • The fibrous connective tissue matrix of the heart prevents further spread of APs to the ventricles
 • A slight delay at the AV node occurs
 – Due to slower formation of action potentials
 – Allows further emptying of the atria
 – Action potentials travel down the Atrioventricular bundle (Bundle of His) which splits into left and right atroventricular bundles (bundle branches) and then into the conduction myofibers (Purkinje cells)
 • Purkinje cells are larger in diameter & conduct impulse very rapidly
 – Causes the cells at the apex to contract nearly simultaneously
 » Good for ventricular ejection

• Electrical Conduction Pathway

 – The electrical system gives rise to electrical changes (depolarization/repolarization) that is transmitted through isotonic body fluids and is recordable
 – The ECG!
 • A recording of electrical activity
 • Can be mapped to the cardiac cycle
Cardiac Cycle

Phases

1. Rest
 • Both atria and ventricles in diastole
 • Blood is filling both atria and ventricles due to low pressure conditions
2. Atrial Systole
 • Completes ventricular filling
3. Isovolumetric Ventricular Contraction
 • Increased pressure in the ventricles causes the AV valves to close… why?
 – Creates the first heart sound (lub)
 • Atria go back to diastole
 • No blood flow as semilunar valves are closed as well

Back to Atrial & Ventricular Diastole

Cardiac Cycle

Phases

4. Ventricular Ejection
 • Intraventricular pressure overcomes aortic pressure
 – Semilunar valves open
 – Blood is ejected
5. Isovolumetric Ventricular Relaxation
 • Intraventricular pressure drops below aortic pressure
 – Semilunar valves close = second heart sound (dup)
 • Pressure still hasn’t dropped enough to open AV valves so volume remains same (isovolumetric)

Back to Atrial & Ventricular Diastole
Cardiac Cycle

Phases

1. Hemodynamic ventricular relaxation—ventricles relax, pressure in ventricles falls, valves open, blood begins to flow into ventricles.

2. Atrial systole—atrial contraction pushes a small amount of blood into ventricles, valves close, blood from atria now enters ventricles.

3. Ventricular ejection—ventricular pressure rises, blood is expelled at rate of 70-80 mL/sec.

4. Hemodynamic ventricular systole—last phase of ventricular contraction occurs. AV valves remain closed, but does not exert enough pressure for open semilunar valves.

Cardiac Cycle

Blood Volumes & Pressure

Lecture Outline

- Cardiovascular System Function
- Functional Anatomy of the Heart
- Myocardial Physiology
- Cardiac Cycle
- Cardiac Output Controls & Blood Pressure… next time!