

Lecture Outline

- Spinal Cord Design & Function
- Functional Brain Regions
 - Flow of Information
 - Learning

Central Nervous System

Spinal Cord Design & Function

- Design = Function
 - Gray matter =
 - · integration of information
 - White matter tracts =
 - flow of information

Central Nervous System

Spinal Cord Design & Function

Efferent Tracts (red) 1.Pyramidal Tracts

- 1a. Lateral corticospinal tract
- 1b. Anterior corticospinal tract
- 2.Extrapyramidal Tracts
 - 2a. Rubrospinal tract
- 2c. Vestibulospinal tract
- 2d. Olivospinal tract

2b. Reticulospinal tract

Afferent Tracts (blue)

- 3. Posterior Column-Medial Lemniscus tract
 - 3a. Fasciculus gracilus
 - 3b. Fasciculus cuneatus
- 4. Spinocerebellar Tract
- 4a. Posterior spinocerebellar tract
- 4b. Anterior spinocerebellar tract
 - 5. Anterolateral System
 - 5a. Lateral Spinothalamic tract
 - 5b. Anterior Spinothalamic tract
 - 6. Spino-olivary tract

S = sacral, L = lumbar, Th = thoracic, C = cervical

Central Nervous System

Spinal Cord Design & Function

- The Proprioceptive Pathways (non-conscious)
 - Spinocerebellar tracts
 - Relay information from golgi organs and muscle spindles
 - Posterior (dorsal) tract is ipsilateral to cerebellum via cerebellar peduncles
 - Anterior (ventral) tract contains crossed and ipsilateral fibers for lower limbs
 - Some proprioceptive signals are carried in the fasciculus cuneatus pathway – upper limbs

Central Nervous System

Spinal Cord Design & Function

- Spino-Olivary Tracts
 - Contains type Ib afferent sensory fibers
 - · Originate from golgi tendon organs
 - Synapse in the olivary nucleus of medulla
 - 2nd order neurons project to the cerebellum

Spinal Cord Design & Function

- The Motor Pathways
 - The Pyramidal Tracts
 - Anterior (Ventral) **Corticospinal Tract**
 - Lateral Corticospinal Tract

Central Nervous System

Spinal Cord Design & Function

- The Motor Pathways
 - Extrapyramidal Tracts
 - Play a role in coordination of movement and posture
 - All receive input from cerebellum
 - Rubrospinal tract
 - » gross limb movement
 - » Not well formed in humans
 - Reticulospinal tract
 - » coordinates movements of locomotion and posture
 - » Influences muscle tone
 - » Descends from the RAS
 - Tectospinal tract
 - » Coordinates head and eye movements in response to visual and auditory stimuli
 - Vestibulospinal tract
 - » control of muscles for equilibrium including movement of

Central Nervous System

Brain Design & Function

- The brain is designed with two systems
 - Wired System
 - Neurons & Associated **Neural Circuits** and Pathways

- Diffuse Modulatory Systems
 - · Uses neurohormones to modulate function of the "wired system"
 - Dopamine, Serotonin, Norepinephrine, Acetylcholine

Central Nervous System

Brain Design & Function

- Diffuse Modulatory Systems
 - Norepinephrine
 - · Locus coeruleus is the origin of cell bodies that secrete norepinephrine to most of the CNS.
 - Activated strongly when new sensory stimuli are encountered
 - · Regulate vigiliance & attentiveness, inactive during sleep
 - · Overactivity = axiety
 - Underactivity = depression

Brain Design & Function

- Diffuse Modulatory Systems
 - Serotonin
 - Serotonin released by neurons of the raphe nuclei in the brain stem
 - Rostral nuclei project to the thalamus and cerebrum
 - · Mediate sleep/wake cycles
 - Alter mood
 - Caudal nuclei project to the cerebellum and spinal cord
 - Modulate pain and locomotion

Central Nervous System

Brain Design & Function

- Diffuse Modulatory Systems
 - Acetylcholine
- Ach secreting neurons have cell bodies located in the ventral telencephalon and the pons
 - Project to the cerebrum, hippocampus and thalamus
 - Linked to
 - · learning and memory
 - Sleep wake cycles
 - Arousal & sensory information
 - Alzheimer's disease may be linked to the deterioration of this system

Central Nervous System

Brain Design & Function

- Diffuse Modulatory Systems
 - Dopamine
- Dopamine released by the substantia Prefrontal nigra and the ventral tegmental area of the brain stem (midbrain)
 - Substantia nigra neurons project to the basal ganglia (caudate nuclei and putamen)

- Loss = parkinsons
- Ventral tegmental area neurons project to the prefrontal cortex & limbic system
- Reinforces behaviors associated with pleasure

Central Nervous System

Brain Design & Function

REGION	FUNCTION
Diencephalon (See Fig. 9-10)	
Thalamus	Integrating center and relay station for sensory and motor information
 Hypothalamus 	Homeostasis and behavioral drives (See Table 9-2)
Pituitary	Hormone secretion
Pineal gland	Melatonin secretion
Cerebellum	Movement coordination
Brain stem	
Midbrain	Eye movement
Pons	Relay station between cerebrum and cerebellum; coordination of breathing
Medulla oblongata	Control of involuntary functions
Reticular formation (See Fig. 9-19)	Arousal, sleep, muscle tone, pain modulation

To basal

Brain Design & Function

- So... how does the brain "do" things?
 - Create voluntary movements
 - Forming Memories
 - Communication: thought → expression
 - Idea of "self" or consciousness
 - Create emotions
 - Experience pain & pleasure
 - Go to sleep & wake up

Central Nervous System

Brain Design & Function

- Voluntary Movement
 - The players: Cerebral Cortex, Basal Ganglia & Cerebellum
 - · Cerebral cortex
 - Contains the primary motor cortex, supplemental motor areas, premotor areas and the prefrontal cortex
 - » The primary motor cortex contains your "motor homunculus"
 - Also has cortices for all of your other senses which may play a role in your voluntary movement
 - » posterior parietal cortex "asesses" current status with regard to body position and target

Central Nervous System

Brain Design & Function

- Voluntary Movement
 - Basal Ganglia
 - Play an indirect role in movement by forming a processing loop between the basal ganglia, the cortex and thalamus

Central Nervous System

Brain Design & Function

- Voluntary Movement
 - Cerebellum
 - Cerebellum is the center for proprioception and continually modifies output to meet the goal of the movement
 - Also stores learned motor skills
 - Connected to both cortex and brainstem/spinal cord

Brain Design & Function

- Voluntary Movement
 - The process

Central Nervous System

Brain Design & Function

- Learning
 - So how does all that occur?
 - · Formation of neural networks/circuits
 - The more they are used
 - The more "permanent" they become!
 - · Integration with other events, memories
 - Consolidation!
 - How does a person with no sight, or no hearing, or no sense of touch, or.... Learn?
 - Did Helen Keller's have a different "wiring" of neural circuits?

Central Nervous System

Brain Design & Function

- Learning
 - Process in the brain differs depending on the type of learning
 - · Episodic memory
 - Allows you to remember events and occurrences
 - goes through the hippocampus
 - » Altered by state of mind
 - » Capable of making your own "truth"
 - Spatial memory
 - Strictly located on the hippocampus and on the right side
 - Creates a mental map of space
 - Procedural memory
 - processed in the cerebellum
 - Emotional memory
 - Involves the amygdala
 - Often tied to intense emotional events

Next Time...

· Peripheral Nervous System