Digestive System

General Overview

- Goal of the Digestive System is to:
 - provide the cells of body with the nutrients required to do their job...
 - be largely self reliant (autonomic)
 - provide defense against ingested pathogens
 - remove waste products

General Overview

- The processes of digestion that allow this to happen (not necessarily in order) are:
 - Ingestion
 - Motility (mixing & propulsion)
 - Digestion
 - Mechanical
 - Chemical
 - Secretion
 - Absorption
 - Defecation
General Overview

- Structural Organization of the Digestive System – *Gross Anatomical*
 - Organs of the alimentary canal (GI-Tract)
 - Mouth to Anus & everything in between that materials pass through.
 - Accessory organs/structures
 - Salivary glands, pancreas, liver, gallbladder
 - Aid in the processing of nutrients

General Overview
Structural Organization of the Digestive System – *Histology of the GI-Tract*

Serosa (visceral peritoneum)

Muscularis
- myenteric plexus

Submucosa
- submucosal plexus

Mucosa

The Anatomy & Physiology of Digestion

Starting from the oral cavity: an examination of the structures and function of each portion of the GI tract with accessory structures included.
The Anatomy & Physiology of Digestion

- **Mouth** (oral cavity)
 - Site of ingestion
 - Movement of food by tongue
 - Forms bolus & moves to posterior of oral cavity to trigger deglutition reflex!
 - Digestion
 - Mechanical
 - Mastication via teeth
 - Chemical
 - Salivary amylase
 - Secretion
 - Saliva (7ml/min max)
 - Water, enzymes (salivary amylase), buffers, wastes, ions, mucin
 - Mucosa histology
 - Stratified squamous epithelium

The Anatomy & Physiology of Digestion

Tooth structure
- **Crown**
 - Visible (enamel on outside, dentin & pulp cavity inside)
- **Neck**
 - At the gum line (where the cementum ends and the enamel begins)
- **Root**
 - Embedded in maxillae or mandible and contains the root

Types of Teeth
- Incisors - 2
- Canines (cuspid) - 1
- Bicuspids (premolars) - 2
- Molars - 3

The Anatomy & Physiology of Digestion

Salivary Glands
- All produce saliva, however…
 - More buffers and mucous from sublingual and submandibular!
 - More enzymes from parotid!
The Anatomy & Physiology of Digestion

The Pharynx & Esophagus

- **Oropharynx & laryngopharynx**
 - food (liquid & solid) & air pathway
 - still lined with stratified squamous
 - contains tonsils (pharyngeal, palatal, lingual)
 - muscles move food into esophagus

- **Esophagus**
 - Muscular tube (upper 1/3 is skeletal muscle, rest is smooth & involuntary)
 - Stratified squamous lining
 - Mucous secretion
 - Upper and lower esophageal sphincters define start and end of esophagus
 - **Function:** deglutition (swallowing)

The Anatomy & Physiology of Digestion

Deglutition

- Initially voluntarily, continues automatically

 - **Voluntary process**
 - The oral phase
 - formation and movement of bolus into pharynx
 - Soft palate elevates (prevents intrusion into nasopharynx)
 - The pharyngeal phase
 - Initiates the swallowing reflex:
 - Larynx elevates, epiglottis moves down to prevent bolus movement into glottis!
 - Pharyngeal muscles move bolus through the Upper Esophageal Sphincter (UES) and into the esophagus

 - **Involuntary process**
 - The esophageal phase
 - Peristalsis propels food to the stomach
 - Bolus must pass through the Lower Esophageal Sphincter (LES)
The Anatomy & Physiology of Digestion

Stomach

- General functions:
 - Storage (temporary)
 - Mechanical digestion (churning)
 - Chemical digestion
 - Pepsin – a proteolytic enzyme
 - Continuation of salivary amylase... until?
 - Intrinsic factor production
 - Needed for Vit B₁₂ absorption

- Gross Anatomy
 - Cardia
 - Fundus
 - Body
 - Pylorus & Pyloric sphincter

The Anatomy & Physiology of Digestion

Stomach

- Histology
 - Mucosa – folded into rugae
 - Contains gastric glands which secrete
 - Mucous – from mucus cells in neck of gland (pit)
 - Parietal cells - secrete HCl & intrinsic factor
 - Chief cells – secrete pepsinogen
 - Muscularis – three layers
 - Internal oblique, middle circular, outer longitudinal
The Anatomy & Physiology of Digestion

Regulation of Stomach Activity - Controlled by CNS, reflexes & hormones!

Phases of regulation

1. Cephalic Phase
 - Seein’, thinkin’, smellin’ . . . FOOD!!
 - Vagus nerve (X)
 - Parasympathetic fibers innervate submucosa (via submucosal plexus) and start glandular secretion
 - Can produce up to ½ Liter/Hour
 - Also starts increased activity in muscularis (via innervation of myenteric plexus)

2. Gastric Phase
 - Food enters stomach through LES
 - Stretch receptors are activated, causing an increase as activity of the submucosal & myenteric plexus (more secretion – pH drops, and movement – churning increases)
 - Gastrin is released by endocrine cells in the pylorus causing increased motility and relaxation of pyloric sphincter – movement of chyme into the duodenum results!!

3. Intestinal Phase
 - Starts when chyme enters duodenum
 - Enterogastric reflex
 - Effects are inhibitory on stomach – why?
 - Increases secretion of intestinal hormones
 - CCK (cholecystokinin), GIP (gastric inhibitory peptide) & Secretin
The Anatomy & Physiology of Digestion

Motility in the Stomach
- Additional layer of muscle (oblique layer)
 - Allows for increased mixing and churning motion!

Digestion in the Stomach
- Carbohydrate
 - Continuation of salivary amylase (until pH drops below 4.5)
- Protein
 - Continues (from mastication) with churning and mixing with gastric juices until pH has dropped to 2 and below…
 - Pepsinogen is activated by HCl into pepsin
 - Pepsin breaks proteins into smaller peptide chains
- Lipids – gastric lipase (milk fat digestion begins)

Absorption in the Stomach
- Very little
 - Small amounts of certain lipid-soluble compounds can be taken up, including aspirin, other non-steroidal anti-inflammatory drugs, and ethanol (alcohol)

The Small Intestine - Regions
- Duodenum
 - Starts at the pyloric sphincter
 - First foot of the small intestine
- Jejunum
 - Second portion of the small intestine
- Ileum
 - Third portion of the small intestine
 - Ends at the ileocecal sphincter
The Anatomy & Physiology of Digestion

The Small Intestine – The Wall

- Visible circular folds are present (plicae circulares)
 - Forces chyme to mix and spiral as it moves
- Villi present throughout the mucosa
 - Though more at the duodenum, less at the ileum
 - Each villus contains a lacteal (lymphatic capillary) – why?
 - At base of villus is an intestinal gland
 - Some mucous (duodenal region mainly) secreted
 - Buffers secreted
- Lined with simple columnar epithelial cells with microvilli
 - Microvilli dramatically increase surface area for digestion and absorption of nutrients
 - Water also enters lumen through the mucosa
- Almost 2 Liters/day of intestinal juice is produced in the small intestine!

The Anatomy & Physiology of Digestion

The Small Intestine

Motility

- Segmentation
 - Alternate constriction of circular muscles only
- Peristalsis
 - Causes a forward spiral movement of chyme
 - Due to plicae circulares
- Hormonal issues
 - Entero gastric reflex – speeds up movement in all areas of small intestine
 - Gastro ileal reflex – relaxation of ileocecal sphincter due to gastrin (from stomach), increases movement into large intestine
The Anatomy & Physiology of Digestion

The Small Intestine

- Control of secretion of enzymes into the duodenum
 - Under parasympathetic control (starts in cephalic phase)
 - Under hormonal control
 - Gastrin
 - ↑ secretion of enzymes in stomach
 - Secretin
 - ↑ secretion of pancreas (buffers) & liver (bile)
 - ↓ gastric secretion
 - CCK (cholecystokinin)
 - ↓ feeling of hunger, slows stomach motility & gastrin secretion
 - Relaxes hepatopancreatic sphincter (allows bile in SI)
 - ↑ production of pancreatic enzymes
 - Contracts gallbladder
 - GIP (Gastric Inhibitory Peptide)
 - Release of insulin by beta cells of pancreatic islets (islets of Langerhans)

Digestion (chemical) in the Small Intestine

- Proteins
 - via pancreatic enzymes (like the stomach, activated in the lumen of the small intestine)
 - Trypsin, Chymotrypsin & carboxypeptidase
 - Act like molecular scissors, cutting proteins in chains of aa’s and also taking off individual aa’s.

- Carbohydrates
 - Reduced by enzymatic action (pancreatic amylase & enzymatic action in microvilli) to absorbable units
 - Glucose, Galactose & Fructose

- Lipids
 - Emulsified by bile secretions & digested by pancreatic lipase

The Anatomy & Physiology of Digestion

Pancreatic Anatomical Features
The Anatomy & Physiology of Digestion

The Liver - Features

- Largest visceral organ (3 ½ lbs)
- Four lobes
 - Right lobe (largest & mainly in rt. Hypochondriac region)
 - Left lobe
 - Caudate lobe
 - Quadrate lobe

The Anatomy & Physiology of Digestion

The Gallbladder & Ducts

- Bile produced in liver
- Transported via hepatic ducts (right & left) to common hepatic duct
- If not needed, stored in gallbladder via cystic duct
- Cystic duct joins hepatic duct to make common bile duct which empties into duodenum

The Anatomy & Physiology of Digestion

Liver Histology

- Lobes of liver consist of many lobules (small functional units)
 - Each lobule contains
 - Hepatocytes (main cells of liver)
 - Kupffer Cells – macrophages in the lobule
 - Blood vessels
 - Blood from hepatic portal vein
 - Blood from hepatic arteries
 - Sinusoids
 - Enlarged capillaries lined with hepatocytes & Kupffer cells
 - Central Vein – in middle of lobule
 - Bile canaliculi
 - Transport bile away from lobule via bile ducts
The Anatomy & Physiology of Digestion

Liver Functions

- Hundreds of functions, but 3 main categories
 - Metabolic Regulation
 - Blood flow from GI tract via hepatic portal vein renders this a good site for processing nutrients & removal of toxins
 - Glucose balance controlled (glucose ↔ glycogen)
 - Storage of lipid (fat) soluble vitamins (A,D,E,K)
 - Blood Regulation
 - Phagocytic activity of Kupffer cells removes rbc’s
 - Kupffer cells are capable of starting an immune response by processing and presenting antigenic material
 - Hepatocytes produce plasma proteins for:
 - Osmotic balance
 - Transports
 - Clotting proteins (hemostasis) & Complement proteins (immune function)
 - Bile Production
 - Contains biliverdin (bilirubin) rbc waste (by-product of rbc recycling)
 - Cholesterol
 - Lipids (bile salts) – emulsifying agents!
 - Water

The Anatomy & Physiology of Digestion

The Large Intestine

- Gross Anatomical Features
 - Starting point
 - at end of ileum – the ileocecal sphincter
 - Ending point
 - Anus
 - Portions:
 - Cecum & appendix
 - Colon (ascending, transverse & descending)
 - Rectum
 - The last 6 inches of the large intestine
The Anatomy & Physiology of Digestion

The Large Intestine

Layers of the Wall

- Mucosa
 - Large quantity of goblet cells
 - No villi

- Muscularis
 - Circular muscle forms pouches = haustra
 - Longitudinal muscle forms a band = taenia coli

- Serosa
 - Visceral peritoneum forms mesenteries to attach colon to abdominal wall.

Functions

- Absorption
 - Water:
 - 1500 ml of substance enters daily, only 200 ml is absorbed
 - 1.3 L/day reabsorbed
 - Other:
 - Bile salts, bilirubin (unintentional, modified & excreted by kidney later), toxins – if present (from bacterial action)
 - Vitamins
 - Vitamin K – required for proper clotting
 - Biotin – required for glucose metabolism
 - Pantothenic Acid (B5) – required for some hormones and neurotransmitters synthesis
The Anatomy & Physiology of Digestion

The Large Intestine

- Functions
 - Movement
 - Haustral churning
 - Sequential contraction of haustral pockets
 - Mass movement (peristalsis)
 - In response to gastrin (gastric phase & intestinal phase)
 - Creates urge to defecate as fecal matter is moved into rectum (initiates defecation reflex)
 - Defecation – 2 positive feedback loops!!
 - Stretch receptors in rectum (when stretched) – starts process
 - Increases activity in sigmoid colon and rectum
 - This moves feces towards the anus, stretching the rectum and anal canal
 - Parasympathetic motor neurons are activated, initiating mass movement!
 - Voluntary Aspect – control over external anal sphincter – yeah!

Digestive Overview

The Anatomy & Physiology of Digestion